Abstract

A conventional handheld skin camera is suitable for 2D inspection of shallow skin. Due to its high resolution and noninvasiveness, optical coherence tomography (OCT) has become a popular medical-imaging technology. Among OCT schemes, full-field optical coherence tomography (FF-OCT) is suitable for rapid en face imaging, as it uses a 2D imaging device for pixel processing of a sample plane. Because of its wide bandwidth and long lifetime, an RGB LED was chosen in an FF-OCT system among three source candidates in this study. A full-color tissue image and real-time video were obtained from the system to demonstrate the potential of the RGB LED FF-OCT system in medical imaging. All devices used here can be integrated by micro-optoelectromechanical technology into a handheld model. Noninvasive, real-time, full-color handheld imaging capability contributes to advance dermatology and cosmetology.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997).
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef]
  3. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Three-dimensional second-harmonic generation imaging with femtosecond laser pulses,” Opt. Lett. 23, 1209–1211 (1998).
    [CrossRef]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  5. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
    [CrossRef]
  6. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [CrossRef]
  7. J. Welzel, E. Lankenau, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
    [CrossRef]
  8. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
    [CrossRef]
  9. F. Spoler, M. Forst, Y. Marquardt, D. Hoeller, H. Kurz, and F. Abuzahra, “High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents,” Skin Res. Technol. 12, 261–267 (2006).
    [CrossRef]
  10. B. W. Yang and X. C. Chen, “Full-color skin imaging using RGB LED and floating lens in optical coherence tomography,” Biomed. Opt. Express 1, 1341–1346 (2010).
    [CrossRef]
  11. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
    [CrossRef]
  12. L. Yu and M. K. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12, 6632–6641 (2004).
    [CrossRef]
  13. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. L. Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13, 6286–6295 (2005).
    [CrossRef]
  14. P. Egan, F. Lakestani, M. P. Whelan, and M. K. Kim, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45, 120504 (2006).
    [CrossRef]
  15. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16, 19434–19446 (2008).
    [CrossRef]
  16. E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3, 661–666 (2012).
    [CrossRef]
  17. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett. 22, 1039–1041 (1997).
    [CrossRef]
  18. Optoma Corporation, USA, http://www.optomausa.com/ .
  19. Edison Opto Corporation, Taipei, Taiwan, http://www.edison-opto.com.tw/ .
  20. Huey Jann Electronics Industry Co., Ltd., Taipei, Taiwan, http://www.hueyjann.com.tw/ .
  21. Thorlabs, Inc., New Jersey, USA, http://www.thorlabs.com/thorProduct.cfm?partNumber=DCC1645C .
  22. OtO Photonics, Hsinchu, Taiwan, http://www.otophotonics.com/ .
  23. T. H. Shao, Engineering Optics: Optical Design (Electronic Industry, 2003).
  24. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]

2012 (1)

2010 (1)

2008 (1)

2006 (2)

F. Spoler, M. Forst, Y. Marquardt, D. Hoeller, H. Kurz, and F. Abuzahra, “High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents,” Skin Res. Technol. 12, 261–267 (2006).
[CrossRef]

P. Egan, F. Lakestani, M. P. Whelan, and M. K. Kim, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45, 120504 (2006).
[CrossRef]

2005 (2)

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. L. Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13, 6286–6295 (2005).
[CrossRef]

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef]

2004 (2)

2000 (2)

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef]

1998 (1)

1997 (2)

J. Welzel, E. Lankenau, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in the human retina by low-coherence reflectometry,” Opt. Lett. 22, 1039–1041 (1997).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1990 (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Abuzahra, F.

F. Spoler, M. Forst, Y. Marquardt, D. Hoeller, H. Kurz, and F. Abuzahra, “High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents,” Skin Res. Technol. 12, 261–267 (2006).
[CrossRef]

Altmeyer, P.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef]

Aranda, J.

Auksorius, E.

Boccara, C.

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef]

Bouma, B. E.

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef]

Bromberg, Y.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chen, X. C.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Coron, E.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Dobre, G. M.

Drexler, W.

Dubois, A.

Egan, P.

P. Egan, F. Lakestani, M. P. Whelan, and M. K. Kim, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45, 120504 (2006).
[CrossRef]

Engelhardt, R.

J. Welzel, E. Lankenau, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Forst, M.

F. Spoler, M. Forst, Y. Marquardt, D. Hoeller, H. Kurz, and F. Abuzahra, “High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents,” Skin Res. Technol. 12, 261–267 (2006).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gambichler, T.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef]

Gargasson, J. L.

Gauderon, R.

Georges, P.

Goldstein, A. M.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Grieve, K.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hoeller, D.

F. Spoler, M. Forst, Y. Marquardt, D. Hoeller, H. Kurz, and F. Abuzahra, “High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents,” Skin Res. Technol. 12, 261–267 (2006).
[CrossRef]

Hoffmann, K.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Ippen, E. P.

Jackson, D. A.

Kärtner, F. X.

Kazlauskas, A.

Kim, M. K.

P. Egan, F. Lakestani, M. P. Whelan, and M. K. Kim, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45, 120504 (2006).
[CrossRef]

L. Yu and M. K. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12, 6632–6641 (2004).
[CrossRef]

Kurz, H.

F. Spoler, M. Forst, Y. Marquardt, D. Hoeller, H. Kurz, and F. Abuzahra, “High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents,” Skin Res. Technol. 12, 261–267 (2006).
[CrossRef]

Lakestani, F.

P. Egan, F. Lakestani, M. P. Whelan, and M. K. Kim, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45, 120504 (2006).
[CrossRef]

Lankenau, E.

J. Welzel, E. Lankenau, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

Lecaque, R.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Liu, L.

Lukins, P. B.

Marquardt, Y.

F. Spoler, M. Forst, Y. Marquardt, D. Hoeller, H. Kurz, and F. Abuzahra, “High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents,” Skin Res. Technol. 12, 261–267 (2006).
[CrossRef]

Moneron, G.

Moreau, J.

Morgner, U.

Motiejunaite, R.

Moussa, G.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef]

Paques, M.

Pieretti, A.

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

Podoleanu, G.

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Sacchet, D.

Sahel, J.

Sand, D.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef]

Sand, M.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Shao, T. H.

T. H. Shao, Engineering Optics: Optical Design (Electronic Industry, 2003).

Sheppard, C. J. R.

Shotton, D. M.

C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997).

Simonutti, M.

Spoler, F.

F. Spoler, M. Forst, Y. Marquardt, D. Hoeller, H. Kurz, and F. Abuzahra, “High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents,” Skin Res. Technol. 12, 261–267 (2006).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Tearney, G. J.

Vabre, L.

Webb, D. J.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Welzel, J.

J. Welzel, E. Lankenau, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

Whelan, M. P.

P. Egan, F. Lakestani, M. P. Whelan, and M. K. Kim, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45, 120504 (2006).
[CrossRef]

Yang, B. W.

Yu, L.

Appl. Opt. (1)

Biomed. Opt. Express (2)

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Am. Acad. Dermatol. (1)

J. Welzel, E. Lankenau, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

J. Dermatol. Sci. (1)

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef]

Opt. Eng. (1)

P. Egan, F. Lakestani, M. P. Whelan, and M. K. Kim, “Full-field optical coherence tomography with a complimentary metal-oxide semiconductor digital signal processor camera,” Opt. Eng. 45, 120504 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Science (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Skin Res. Technol. (1)

F. Spoler, M. Forst, Y. Marquardt, D. Hoeller, H. Kurz, and F. Abuzahra, “High-resolution optical coherence tomography as a non-destructive monitoring tool for the engineering of skin equivalents,” Skin Res. Technol. 12, 261–267 (2006).
[CrossRef]

Other (7)

C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997).

Optoma Corporation, USA, http://www.optomausa.com/ .

Edison Opto Corporation, Taipei, Taiwan, http://www.edison-opto.com.tw/ .

Huey Jann Electronics Industry Co., Ltd., Taipei, Taiwan, http://www.hueyjann.com.tw/ .

Thorlabs, Inc., New Jersey, USA, http://www.thorlabs.com/thorProduct.cfm?partNumber=DCC1645C .

OtO Photonics, Hsinchu, Taiwan, http://www.otophotonics.com/ .

T. H. Shao, Engineering Optics: Optical Design (Electronic Industry, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the FF-OCT system employing an LED as an imaging source.

Fig. 2.
Fig. 2.

Three LED candidates considered for low-coherent FF-OCT imaging: (a) microprojector source module; (b) single-chip LED package; (c) multiple-chip LED package.

Fig. 3.
Fig. 3.

(a)–(c) Power spectra of red sources shown in Figs. 2(a)2(c), respectively.

Fig. 4.
Fig. 4.

(a) Guppy fish sample used in the study. (b) Blood cells flowing in the capillary of its belly.

Fig. 5.
Fig. 5.

TracePro modeling to derive the focusing depths of the RGB beams incident to sample skin.

Fig. 6.
Fig. 6.

(a)–(c) RGB images derived from the belly of the guppy sample, respectively. (d) Full-color image obtained by overlapping RGB images.

Fig. 7.
Fig. 7.

(a) Interference fringes obtained from the FF-OCT system. (b) Dermal image of volunteer’s wrist: shallow. (c) Dermal image of volunteer’s wrist: 20 μm deeper.

Fig. 8.
Fig. 8.

Design of handheld model for full-color FF-OCT system.

Tables (2)

Tables Icon

Table 1. Peak Wavelength λ (nm), FWHM Δλ (nm), Penetration Depth δ (mm), Axial Resolution lc (μm), and Optical Flux Φ (lm) of Three Red LEDs, Respectively

Tables Icon

Table 2. Dependence of Imaging Depths of RBG Rays (B1, B2, and B3, Respectively) on the Distance between the Objective Lens and Sample Surface (A)

Metrics