Abstract

Optical coherence elastography (OCE) has been applied to the study of microscopic deformation in biological tissue under compressive stress for more than a decade. In this paper, OCE has been extended for the first time, to the best of our knowledge, to deformation measurement in a glass fiber composite in the field of nondestructive testing. A customized optical coherence tomography system, combined with a mechanical loading setup, was developed to provide pairs of prestressed and stressed structural images. The speckle tracking algorithm, based on 2D cross correlation, was used to estimate the local displacements in micrometer scale. The algorithm was first evaluated by a test of rigid body translation. Then the experiments were carried out with the tensile test and three point bending on a set of glass fiber composites. The structural features and structural variations during the mechanical loadings are clearly observed with the presented displacement maps. The advantages and prospects for OCE application on glass fiber composites are discussed at the end of this paper.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Rowlands and I. Daniel, “Application of holography to anisotropic composite plates,” Exp. Mech. 12, 75–82 (1972).
    [CrossRef]
  2. J. Butters and J. Leendertz, “Speckle pattern and holographic techniques in engineering metrology,” Opt. Laser Technol. 3, 26–30 (1971).
    [CrossRef]
  3. D. Post, B. Han, and P. Ifju, “Moiré interferometry,” in High Sensitivity Moiré (Springer, 1994), pp. 135–226.
  4. T. Chu, W. Ranson, and M. Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).
    [CrossRef]
  5. Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struc. 9, 832–838 (2000).
  6. J. Botsis, L. Humbert, F. Colpo, and P. Giaccari, “Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials,” Opt. Lasers Eng. 43, 491–510 (2005).
    [CrossRef]
  7. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imag. 13, 111–134 (1991).
    [CrossRef]
  8. C. L. De Korte, G. Pasterkamp, A. F. Van Der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102, 617–623 (2000).
    [CrossRef]
  9. A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).
  10. Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci. 56, 139–174 (2011).
    [CrossRef]
  11. L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
    [CrossRef]
  12. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  13. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).
  14. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3, 199–211 (1998).
    [CrossRef]
  15. J. Rogowska, N. Patel, S. Plummer, and M. Brezinski, “Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties,” Br. J. Radiol. 79, 707–711 (2006).
    [CrossRef]
  16. H.-J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12, 63–73 (2006).
  17. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 1–17 (2014).
  18. P. Liu, R. M. Groves, and R. Benedictus, “Signal processing in optical coherence tomography for aerospace material characterization,” Opt. Eng. 52, 033201 (2013).
    [CrossRef]
  19. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
    [CrossRef]
  20. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  21. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
  22. D. D. Duncan and S. J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” J. Biomed. Opt. 6, 418–426 (2001).
    [CrossRef]
  23. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).
    [CrossRef]
  24. P. Liu, R. M. Groves, and R. Benedictus, “Optical coherence tomography for the study of polymer and polymer matrix composites,” Strain, doi: 10.1111/str.12095 (to be published).
  25. J. Rogowska, N. Patel, J. Fujimoto, and M. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90, 556–562 (2004).
  26. G. Elert, “The physics hypertextbook,” 2006, http://physics.info/refraction/ .
  27. C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
    [CrossRef]
  28. J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. Ruiz, “Assessment of corneal deformation using optical coherence tomography and digital volume correlation,” in Mechanics of Biological Systems and Materials, Vol. 5 (Springer, 2013), pp. 155–160.
  29. K. Parker, M. Doyley, and D. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56, R1–R29 (2011).
    [CrossRef]
  30. C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).
    [CrossRef]
  31. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14, 11585–11597 (2006).
    [CrossRef]
  32. V. Y. Zaitsev, L. A. Matveev, G. V. Gelikonov, A. L. Matveyev, and V. M. Gelikonov, “A correlation-stability approach to elasticity mapping in optical coherence tomography,” Laser Phys. Lett. 10, 065601 (2013).
    [CrossRef]
  33. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3, 1865–1879 (2012).
    [CrossRef]

2014 (1)

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 1–17 (2014).

2013 (3)

P. Liu, R. M. Groves, and R. Benedictus, “Signal processing in optical coherence tomography for aerospace material characterization,” Opt. Eng. 52, 033201 (2013).
[CrossRef]

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[CrossRef]

V. Y. Zaitsev, L. A. Matveev, G. V. Gelikonov, A. L. Matveyev, and V. M. Gelikonov, “A correlation-stability approach to elasticity mapping in optical coherence tomography,” Laser Phys. Lett. 10, 065601 (2013).
[CrossRef]

2012 (2)

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3, 1865–1879 (2012).
[CrossRef]

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

2011 (3)

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci. 56, 139–174 (2011).
[CrossRef]

K. Parker, M. Doyley, and D. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56, R1–R29 (2011).
[CrossRef]

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).
[CrossRef]

2007 (2)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).
[CrossRef]

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[CrossRef]

2006 (3)

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14, 11585–11597 (2006).
[CrossRef]

J. Rogowska, N. Patel, S. Plummer, and M. Brezinski, “Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties,” Br. J. Radiol. 79, 707–711 (2006).
[CrossRef]

H.-J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12, 63–73 (2006).

2005 (2)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).

J. Botsis, L. Humbert, F. Colpo, and P. Giaccari, “Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials,” Opt. Lasers Eng. 43, 491–510 (2005).
[CrossRef]

2004 (1)

J. Rogowska, N. Patel, J. Fujimoto, and M. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90, 556–562 (2004).

2001 (2)

D. D. Duncan and S. J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” J. Biomed. Opt. 6, 418–426 (2001).
[CrossRef]

A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).

2000 (2)

C. L. De Korte, G. Pasterkamp, A. F. Van Der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102, 617–623 (2000).
[CrossRef]

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struc. 9, 832–838 (2000).

1999 (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

1998 (1)

1991 (2)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imag. 13, 111–134 (1991).
[CrossRef]

1985 (1)

T. Chu, W. Ranson, and M. Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).
[CrossRef]

1972 (1)

R. Rowlands and I. Daniel, “Application of holography to anisotropic composite plates,” Exp. Mech. 12, 75–82 (1972).
[CrossRef]

1971 (1)

J. Butters and J. Leendertz, “Speckle pattern and holographic techniques in engineering metrology,” Opt. Laser Technol. 3, 26–30 (1971).
[CrossRef]

Al-Helli, O.

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

Amromin, E.

A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).

Benedictus, R.

P. Liu, R. M. Groves, and R. Benedictus, “Signal processing in optical coherence tomography for aerospace material characterization,” Opt. Eng. 52, 033201 (2013).
[CrossRef]

P. Liu, R. M. Groves, and R. Benedictus, “Optical coherence tomography for the study of polymer and polymer matrix composites,” Strain, doi: 10.1111/str.12095 (to be published).

Bom, N.

C. L. De Korte, G. Pasterkamp, A. F. Van Der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102, 617–623 (2000).
[CrossRef]

Boppart, S. A.

H.-J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12, 63–73 (2006).

Botsis, J.

J. Botsis, L. Humbert, F. Colpo, and P. Giaccari, “Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials,” Opt. Lasers Eng. 43, 491–510 (2005).
[CrossRef]

Bouma, B. E.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).

Brezinski, M.

J. Rogowska, N. Patel, S. Plummer, and M. Brezinski, “Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties,” Br. J. Radiol. 79, 707–711 (2006).
[CrossRef]

J. Rogowska, N. Patel, J. Fujimoto, and M. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90, 556–562 (2004).

Butters, J.

J. Butters and J. Leendertz, “Speckle pattern and holographic techniques in engineering metrology,” Opt. Laser Technol. 3, 26–30 (1971).
[CrossRef]

Cespedes, I.

J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imag. 13, 111–134 (1991).
[CrossRef]

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chu, T.

T. Chu, W. Ranson, and M. Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).
[CrossRef]

Colpo, F.

J. Botsis, L. Humbert, F. Colpo, and P. Giaccari, “Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials,” Opt. Lasers Eng. 43, 491–510 (2005).
[CrossRef]

Daniel, I.

R. Rowlands and I. Daniel, “Application of holography to anisotropic composite plates,” Exp. Mech. 12, 75–82 (1972).
[CrossRef]

De Korte, C. L.

C. L. De Korte, G. Pasterkamp, A. F. Van Der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102, 617–623 (2000).
[CrossRef]

Doyley, M.

K. Parker, M. Doyley, and D. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56, R1–R29 (2011).
[CrossRef]

Dresner, M.

A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).

Duncan, D. D.

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14, 11585–11597 (2006).
[CrossRef]

D. D. Duncan and S. J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” J. Biomed. Opt. 6, 418–426 (2001).
[CrossRef]

Ehman, R. L.

A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).

Felmlee, J. P.

A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fu, J.

J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. Ruiz, “Assessment of corneal deformation using optical coherence tomography and digital volume correlation,” in Mechanics of Biological Systems and Materials, Vol. 5 (Springer, 2013), pp. 155–160.

Fujimoto, J.

J. Rogowska, N. Patel, J. Fujimoto, and M. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90, 556–562 (2004).

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gelikonov, G. V.

V. Y. Zaitsev, L. A. Matveev, G. V. Gelikonov, A. L. Matveyev, and V. M. Gelikonov, “A correlation-stability approach to elasticity mapping in optical coherence tomography,” Laser Phys. Lett. 10, 065601 (2013).
[CrossRef]

Gelikonov, V. M.

V. Y. Zaitsev, L. A. Matveev, G. V. Gelikonov, A. L. Matveyev, and V. M. Gelikonov, “A correlation-stability approach to elasticity mapping in optical coherence tomography,” Laser Phys. Lett. 10, 065601 (2013).
[CrossRef]

Giaccari, P.

J. Botsis, L. Humbert, F. Colpo, and P. Giaccari, “Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials,” Opt. Lasers Eng. 43, 491–510 (2005).
[CrossRef]

Greenleaf, J. F.

A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Groves, R. M.

P. Liu, R. M. Groves, and R. Benedictus, “Signal processing in optical coherence tomography for aerospace material characterization,” Opt. Eng. 52, 033201 (2013).
[CrossRef]

P. Liu, R. M. Groves, and R. Benedictus, “Optical coherence tomography for the study of polymer and polymer matrix composites,” Strain, doi: 10.1111/str.12095 (to be published).

Haghighi-Abayneh, M.

J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. Ruiz, “Assessment of corneal deformation using optical coherence tomography and digital volume correlation,” in Mechanics of Biological Systems and Materials, Vol. 5 (Springer, 2013), pp. 155–160.

Han, B.

D. Post, B. Han, and P. Ifju, “Moiré interferometry,” in High Sensitivity Moiré (Springer, 1994), pp. 135–226.

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).
[CrossRef]

Huang, D.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Humbert, L.

J. Botsis, L. Humbert, F. Colpo, and P. Giaccari, “Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials,” Opt. Lasers Eng. 43, 491–510 (2005).
[CrossRef]

Ifju, P.

D. Post, B. Han, and P. Ifju, “Moiré interferometry,” in High Sensitivity Moiré (Springer, 1994), pp. 135–226.

Kennedy, B. F.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 1–17 (2014).

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3, 1865–1879 (2012).
[CrossRef]

Kennedy, K. M.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 1–17 (2014).

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3, 1865–1879 (2012).
[CrossRef]

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).
[CrossRef]

Kirkpatrick, S. J.

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14, 11585–11597 (2006).
[CrossRef]

D. D. Duncan and S. J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” J. Biomed. Opt. 6, 418–426 (2001).
[CrossRef]

Ko, H.-J.

H.-J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12, 63–73 (2006).

Koh, S. H.

Kosaka, T.

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struc. 9, 832–838 (2000).

Kruse, S.

A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).

Lau, S.

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci. 56, 139–174 (2011).
[CrossRef]

Leendertz, J.

J. Butters and J. Leendertz, “Speckle pattern and holographic techniques in engineering metrology,” Opt. Laser Technol. 3, 26–30 (1971).
[CrossRef]

Li, X.

J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imag. 13, 111–134 (1991).
[CrossRef]

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Liu, P.

P. Liu, R. M. Groves, and R. Benedictus, “Signal processing in optical coherence tomography for aerospace material characterization,” Opt. Eng. 52, 033201 (2013).
[CrossRef]

P. Liu, R. M. Groves, and R. Benedictus, “Optical coherence tomography for the study of polymer and polymer matrix composites,” Strain, doi: 10.1111/str.12095 (to be published).

Mahowald, J.

A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).

Mancini, L.

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

Manduca, A.

A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).

Massey, L.

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

Matveev, L. A.

V. Y. Zaitsev, L. A. Matveev, G. V. Gelikonov, A. L. Matveyev, and V. M. Gelikonov, “A correlation-stability approach to elasticity mapping in optical coherence tomography,” Laser Phys. Lett. 10, 065601 (2013).
[CrossRef]

Matveyev, A. L.

V. Y. Zaitsev, L. A. Matveev, G. V. Gelikonov, A. L. Matveyev, and V. M. Gelikonov, “A correlation-stability approach to elasticity mapping in optical coherence tomography,” Laser Phys. Lett. 10, 065601 (2013).
[CrossRef]

McLaughlin, R. A.

Miranda, M.

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

Munro, P. R.

Okabe, Y.

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struc. 9, 832–838 (2000).

Oliphant, T. E.

A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).

Ophir, J.

J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imag. 13, 111–134 (1991).
[CrossRef]

Parker, K.

K. Parker, M. Doyley, and D. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56, R1–R29 (2011).
[CrossRef]

Parkes, H.

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

Pasterkamp, G.

C. L. De Korte, G. Pasterkamp, A. F. Van Der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102, 617–623 (2000).
[CrossRef]

Patel, N.

J. Rogowska, N. Patel, S. Plummer, and M. Brezinski, “Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties,” Br. J. Radiol. 79, 707–711 (2006).
[CrossRef]

J. Rogowska, N. Patel, J. Fujimoto, and M. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90, 556–562 (2004).

Pierron, F.

J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. Ruiz, “Assessment of corneal deformation using optical coherence tomography and digital volume correlation,” in Mechanics of Biological Systems and Materials, Vol. 5 (Springer, 2013), pp. 155–160.

Plummer, S.

J. Rogowska, N. Patel, S. Plummer, and M. Brezinski, “Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties,” Br. J. Radiol. 79, 707–711 (2006).
[CrossRef]

Ponnekanti, H.

J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imag. 13, 111–134 (1991).
[CrossRef]

Post, D.

D. Post, B. Han, and P. Ifju, “Moiré interferometry,” in High Sensitivity Moiré (Springer, 1994), pp. 135–226.

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Ranson, W.

T. Chu, W. Ranson, and M. Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).
[CrossRef]

Rogowska, J.

J. Rogowska, N. Patel, S. Plummer, and M. Brezinski, “Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties,” Br. J. Radiol. 79, 707–711 (2006).
[CrossRef]

J. Rogowska, N. Patel, J. Fujimoto, and M. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90, 556–562 (2004).

Rowlands, R.

R. Rowlands and I. Daniel, “Application of holography to anisotropic composite plates,” Exp. Mech. 12, 75–82 (1972).
[CrossRef]

Rubens, D.

K. Parker, M. Doyley, and D. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56, R1–R29 (2011).
[CrossRef]

Ruiz, P.

J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. Ruiz, “Assessment of corneal deformation using optical coherence tomography and digital volume correlation,” in Mechanics of Biological Systems and Materials, Vol. 5 (Springer, 2013), pp. 155–160.

Sampson, D. D.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 1–17 (2014).

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3, 1865–1879 (2012).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3, 199–211 (1998).
[CrossRef]

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Shung, K. K.

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci. 56, 139–174 (2011).
[CrossRef]

So, P.-W.

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

Stack, R.

H.-J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12, 63–73 (2006).

Standish, B.

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[CrossRef]

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).
[CrossRef]

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[CrossRef]

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Strand, C.

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

Sun, C.

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[CrossRef]

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).
[CrossRef]

Sutton, M.

T. Chu, W. Ranson, and M. Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).
[CrossRef]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Takeda, N.

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struc. 9, 832–838 (2000).

Tan, W.

H.-J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12, 63–73 (2006).

Tearney, G. J.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).

Thornton, J. S.

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).

Van Der Steen, A. F.

C. L. De Korte, G. Pasterkamp, A. F. Van Der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102, 617–623 (2000).
[CrossRef]

Vuong, B.

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[CrossRef]

Wang, R. K.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14, 11585–11597 (2006).
[CrossRef]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).

Wen, X.-Y.

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[CrossRef]

White, M.

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

Woutman, H. A.

C. L. De Korte, G. Pasterkamp, A. F. Van Der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102, 617–623 (2000).
[CrossRef]

Wu, D.

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci. 56, 139–174 (2011).
[CrossRef]

Yang, V.

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[CrossRef]

Yang, V. X.

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).
[CrossRef]

Yashiro, S.

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struc. 9, 832–838 (2000).

Yazdi, Y.

J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imag. 13, 111–134 (1991).
[CrossRef]

Zaitsev, V. Y.

V. Y. Zaitsev, L. A. Matveev, G. V. Gelikonov, A. L. Matveyev, and V. M. Gelikonov, “A correlation-stability approach to elasticity mapping in optical coherence tomography,” Laser Phys. Lett. 10, 065601 (2013).
[CrossRef]

Zhou, Q.

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci. 56, 139–174 (2011).
[CrossRef]

Zrinzo, L.

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

Appl. Phys. B (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).
[CrossRef]

Biomed. Opt. Express (1)

Br. J. Radiol. (1)

J. Rogowska, N. Patel, S. Plummer, and M. Brezinski, “Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties,” Br. J. Radiol. 79, 707–711 (2006).
[CrossRef]

Circulation (1)

C. L. De Korte, G. Pasterkamp, A. F. Van Der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102, 617–623 (2000).
[CrossRef]

Exp. Mech. (2)

T. Chu, W. Ranson, and M. Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232–244 (1985).
[CrossRef]

R. Rowlands and I. Daniel, “Application of holography to anisotropic composite plates,” Exp. Mech. 12, 75–82 (1972).
[CrossRef]

Heart (1)

J. Rogowska, N. Patel, J. Fujimoto, and M. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90, 556–562 (2004).

IEEE J. Sel. Top. Quantum Electron. (2)

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 1–17 (2014).

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

J. Biomed. Opt. (3)

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[CrossRef]

D. D. Duncan and S. J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” J. Biomed. Opt. 6, 418–426 (2001).
[CrossRef]

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16, 043001 (2011).
[CrossRef]

J. Phys. D (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).

Laser Phys. Lett. (1)

V. Y. Zaitsev, L. A. Matveev, G. V. Gelikonov, A. L. Matveyev, and V. M. Gelikonov, “A correlation-stability approach to elasticity mapping in optical coherence tomography,” Laser Phys. Lett. 10, 065601 (2013).
[CrossRef]

Medical Image Anal. (1)

A. Manduca, T. E. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Medical Image Anal. 5, 237–254 (2001).

Neuroimage (1)

L. Massey, M. Miranda, L. Zrinzo, O. Al-Helli, H. Parkes, J. S. Thornton, P.-W. So, M. White, L. Mancini, and C. Strand, “High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4  T with histological validation,” Neuroimage 59, 2035–2044 (2012).
[CrossRef]

Opt. Eng. (1)

P. Liu, R. M. Groves, and R. Benedictus, “Signal processing in optical coherence tomography for aerospace material characterization,” Opt. Eng. 52, 033201 (2013).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (1)

J. Butters and J. Leendertz, “Speckle pattern and holographic techniques in engineering metrology,” Opt. Laser Technol. 3, 26–30 (1971).
[CrossRef]

Opt. Lasers Eng. (1)

J. Botsis, L. Humbert, F. Colpo, and P. Giaccari, “Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials,” Opt. Lasers Eng. 43, 491–510 (2005).
[CrossRef]

Phys. Med. Biol. (1)

K. Parker, M. Doyley, and D. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56, R1–R29 (2011).
[CrossRef]

Prog. Mater. Sci. (1)

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci. 56, 139–174 (2011).
[CrossRef]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Smart Mater. Struc. (1)

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struc. 9, 832–838 (2000).

Tissue Eng. (1)

H.-J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12, 63–73 (2006).

Ultrason. Imag. (1)

J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imag. 13, 111–134 (1991).
[CrossRef]

Other (5)

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).

P. Liu, R. M. Groves, and R. Benedictus, “Optical coherence tomography for the study of polymer and polymer matrix composites,” Strain, doi: 10.1111/str.12095 (to be published).

D. Post, B. Han, and P. Ifju, “Moiré interferometry,” in High Sensitivity Moiré (Springer, 1994), pp. 135–226.

J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. Ruiz, “Assessment of corneal deformation using optical coherence tomography and digital volume correlation,” in Mechanics of Biological Systems and Materials, Vol. 5 (Springer, 2013), pp. 155–160.

G. Elert, “The physics hypertextbook,” 2006, http://physics.info/refraction/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic setup for OCE application. (a) Customized fiber-optical OCT system. (b), (c) Tensile and three point bending tests on the specimen, respectively. SLD, superluminescent diode; FC, fiber coupler; P, polarization controller; ODL, optical delay line; PD, photo detector; SP, sample; DAQ, data acquisition board; F, force.

Fig. 2.
Fig. 2.

Image processing steps for internal displacement estimation.

Fig. 3.
Fig. 3.

OCE evaluation with a test of rigid body translation. (a), (b) Pair of structural images before and after translation, respectively. (c), (d) Calculated displacement maps in the axial and lateral directions, respectively.

Fig. 4.
Fig. 4.

Pair of cross-sectional images of a glass fiber composite (a) before and (b) after deformation. Both images were acquired from the same spatial location over a 10 mm length, composed of 500 A-scans.

Fig. 5.
Fig. 5.

Lateral displacement maps with processing window size (axial by lateral) (a) 20*20, (b) 30*30, (c) 40*40, (d) 60*30, (e) 50*50, and (f) 80*40. The areas with background color indicate where the signal-to-noise ratio is too low for the displacement calculation.

Fig. 6.
Fig. 6.

(a) Mean displacement with regard to the lateral location, calculated by averaging each axial line of the displacement maps. (b), (c) Mean and RMSE of the lateral displacement with regard to the increased window size. Specifically, the block sizes 1 to 6 represent window sizes of 20*20, 30*30, 40*40, 60*30, 50*50, and 80*40, respectively.

Fig. 7.
Fig. 7.

Axial displacement maps from one cross-sectional structure of the glass fiber composite under three point bending test. The white frames indicate the location of the loading actuator. The incremental axial translation increases by 250 μm for each successive image (a)–(c).

Fig. 8.
Fig. 8.

Average axial displacements along the lateral direction obtained from the three loading conditions with 250 μm incremental axial translation of the actuator.

Tables (1)

Tables Icon

Table 1. OCE System Accuracy Analysis

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Rl,k=i=1m1j=1m2(Xi,jX¯)(Yi+l,j+kY¯)i=1m1j=1m2(Xi,jX¯)2i=1m1j=1m2(Yi+l,j+kY¯)2,
PE=|d¯d|d,
RMSE=1MNi=1Mj=1N(d^i,jd)2,
dl=50090000Δl,

Metrics