Abstract

A method for fast computer hologram generation for long-depth objects using double wavefront recording planes (WRPs) and a graphics-processing unit (GPU) is presented. The WRPs are placed between the object and the hologram plane. Each WRP records the wavefront from a section of the object. Double WRPs can provide a shorter calculation time and enhanced reconstructed image quality compared with a single WRP, especially for long-depth objects. The average generation speed of two WRPs is 2.5 times that of one WRP. The correlation efficiency of the reconstructed layer relative to the original is 94% for two WRPs and 88.3% for one WRP at the close depth layer.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kang, F. Yaraş, and L. Onural, “Graphics processing unit accelerated computation of digital holograms,” Appl. Opt. 48, H137–H143 (2009).
    [CrossRef]
  2. R. H.-Y. Chen and T. D. Wilkinson, “Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterization for three-dimensional display,” Appl. Opt. 48, 4246–4255 (2009).
    [CrossRef]
  3. H. Sakata, K. Hosoyachi, C. H. Yang, and Y. Sakamoto, “Calculation method for computer-generated holograms with cylindrical basic object light by using a graphics processing unit,” Appl. Opt. 50, H306–H314 (2011).
    [CrossRef]
  4. H. Pham, H. Ding, N. Sobh, M. Do, S. Patel, and G. Popescu, “Off-axis quantitative phase imaging processing using CUDA: toward real-time applications,” Biomed. Opt. Express 2, 1781–1793 (2011).
    [CrossRef]
  5. Y. Pan, X. Xu, and X. Liang, “Fast distributed large-pixel-count hologram computation using a GPU cluster,” Appl. Opt. 52, 6562–6571 (2013).
    [CrossRef]
  6. S. C. Kim, X. B. Dong, M. W. Kwon, and E. S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21, 11568–11584 (2013).
    [CrossRef]
  7. J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52, 1404–1412 (2013).
    [CrossRef]
  8. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34, 3133–3135 (2009).
    [CrossRef]
  9. T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18, 19504–19509 (2010).
    [CrossRef]
  10. J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20, 4018–4023 (2012).
    [CrossRef]
  11. P. Tsang, W.-K. Cheung, T.-C. Poon, and C. Zhou, “Holographic video at 40 frames per second for 4-million object points,” Opt. Express 19, 15205–15211 (2011).
    [CrossRef]
  12. A.-H. Phan, M.-l. Piao, J.-H. Park, and N. Kim, “Error analysis in parallel two-step phase-shifting method,” Appl. Opt. 52, 2385–2393 (2013).
    [CrossRef]

2013 (4)

2012 (1)

2011 (3)

2010 (1)

2009 (3)

Chen, R. H.-Y.

Cheung, W.-K.

Ding, H.

Do, M.

Dong, X. B.

Hosoyachi, K.

Ito, T.

Jia, J.

Jiang, W.

Kang, H.

Kim, E. S.

Kim, N.

Kim, S. C.

Kwon, M. W.

Li, X.

Liang, X.

Liu, J.

Masuda, N.

Nakayama, H.

Oikawa, M.

Okada, N.

Onural, L.

Pan, Y.

Park, J.-H.

Patel, S.

Pham, H.

Phan, A.-H.

Piao, M.-l.

Poon, T.-C.

Popescu, G.

Sakamoto, Y.

Sakata, H.

Shimobaba, T.

Sobh, N.

Sun, Z.

Tsang, P.

Wang, Y.

Weng, J.

Wilkinson, T. D.

Xu, X.

Yang, C. H.

Yaras, F.

Zhang, B.

Zhao, Q.

Zhou, C.

Appl. Opt. (6)

Biomed. Opt. Express (1)

Opt. Express (4)

Opt. Lett. (1)

Supplementary Material (4)

» Media 1: AVI (1438 KB)     
» Media 2: AVI (1439 KB)     
» Media 3: AVI (14928 KB)     
» Media 4: AVI (14933 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Single-WRP hologram configuration. An object point creates a small area of the wavefront in the WRP, or only one pixel in the WRP receives the light field from a few object points.

Fig. 2.
Fig. 2.

Double-WRP hologram configuration. The WRPs are placed closer to or inside the object.

Fig. 3.
Fig. 3.

Object with 27 points located in three depth layers.

Fig. 4.
Fig. 4.

Reconstruction of object with three depth layers for different WRP positions: (a) first layer, (b) second layer, and (c) third layer.

Fig. 5.
Fig. 5.

CBNU point cloud object with 65,000 points.

Fig. 6.
Fig. 6.

Correlation between each depth layer and the original CBNU object according to WRP position.

Fig. 7.
Fig. 7.

Comparison of the active areas of (a) a single WRP and (b) double WRPs.

Fig. 8.
Fig. 8.

Comparison of the calculation orders of conventional, single-WRP, and double-WRP holograms.

Fig. 9.
Fig. 9.

Object point orthogonal projection with depth buffering to create two matrices containing the depth map and intensity map.

Fig. 10.
Fig. 10.

Reconstructions of object models: (a) CBNU, (b) Chairs, (c) Car, (d) Cars, and (e) Tank.

Fig. 11.
Fig. 11.

Lena object: (a) intensity map and (b) depth map.

Fig. 12.
Fig. 12.

Correlation efficiency of single WRP and double WRPs for each depth layer.

Fig. 13.
Fig. 13.

Reconstruction of the object at the third depth layer. (a) Media 1: single-WRP method in depth focus mode. (b) Media 2: double-WRP method in depth focus mode.

Fig. 14.
Fig. 14.

Single frame of reconstructed videos: (a) frame of captured video with a single WRP (Media 3); (b) frame of captured video with double WRPs (Media 4).

Tables (1)

Tables Icon

Table 1. Generation Time of a 1920×1200 Pixel Hologram (s)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

μWRP(x,y)=jNAjRjexp(jkRj),
Rj=(xxj)2+(yyj)2+zj2,
u(x,y)=F1[F[uWRP(x,y)]F[h(x,y)]],
h(x,y)=exp(jkz)jλzexp[jk2z(x2+y2)],
θ=asin(λ2Δ),
Lj=2zjtanθ,

Metrics