Abstract

A compact, tunable, ultranarrowband terahertz source, Δν1MHz, is demonstrated by upconversion of a 2.324 THz, free-running quantum cascade laser with a THz Schottky-diode-balanced mixer using a swept, synthesized microwave source to drive the nonlinearity. Continuously tunable radiation of 1 μW power is demonstrated in two frequency regions: νLaser±0 to 50 GHz and νLaser±70 to 115 GHz. The sideband spectra were characterized with a Fourier-transform spectrometer, and the radiation was tuned through CO, HDO, and D2O rotational transitions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Danylov, A. R. Light, J. Waldman, N. R. Erickson, X. Qian, and W. D. Goodhue, “2.32  THz quantum cascade laser frequency-locked to the harmonic of a microwave synthesizer source,” Opt. Express 20, 27908 (2012).
    [CrossRef]
  2. I. Mehdi, J. Ward, A. Maestrini, G. Chattopadhyay, E. Schlecht, and J. Gill, “Pushing the limits of multiplier-based local oscillator chains,” in Proceedings of the 19th International Symposium on Space Terahertz Technology, Groningen, The Netherlands, 2008, p. 196.
  3. N. R. Erickson and T. M. Goyette, “Terahertz Schottky-diode balanced mixers,” Proc. SPIE 7215, 721508 (2009).
    [CrossRef]
  4. N. R. Erickson and T. M. Goyette, “1.5  THz low noise Schottky-diode mixers,” http://www.sofia.usra.edu/Science/workshops/asilomar_docs/Poster_3.7_Erickson.pdf .
  5. A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, J. Li, W. D. Goodhue, K. J. Linden, and W. E. Nixon, “Terahertz sideband-tuned quantum cascade laser radiation,” Opt. Express 16, 5171–5180 (2008).
    [CrossRef]
  6. M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
    [CrossRef]
  7. A. A. Danylov, J. Waldman, A. R. Light, T. M. Goyette, R. H. Giles, X. Qian, N. Chandrayan, W. D. Goodhue, and W. E. Nixon, “Long-term frequency and amplitude stability of a solid-nitrogen-cooled continuous wave THz quantum cascade laser,” Proc. SPIE 8261, 82610-D–82614-D (2012).
    [CrossRef]
  8. A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide,” Appl. Opt. 46, 5051–5055 (2007).
    [CrossRef]
  9. http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html .
  10. T. D. Varburg and K. M. Evenson, “Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared,” IEEE Trans. Instrum. Meas. 42, 412–414 (1993).
    [CrossRef]

2012 (2)

A. A. Danylov, A. R. Light, J. Waldman, N. R. Erickson, X. Qian, and W. D. Goodhue, “2.32  THz quantum cascade laser frequency-locked to the harmonic of a microwave synthesizer source,” Opt. Express 20, 27908 (2012).
[CrossRef]

A. A. Danylov, J. Waldman, A. R. Light, T. M. Goyette, R. H. Giles, X. Qian, N. Chandrayan, W. D. Goodhue, and W. E. Nixon, “Long-term frequency and amplitude stability of a solid-nitrogen-cooled continuous wave THz quantum cascade laser,” Proc. SPIE 8261, 82610-D–82614-D (2012).
[CrossRef]

2009 (1)

N. R. Erickson and T. M. Goyette, “Terahertz Schottky-diode balanced mixers,” Proc. SPIE 7215, 721508 (2009).
[CrossRef]

2008 (1)

2007 (2)

1993 (1)

T. D. Varburg and K. M. Evenson, “Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared,” IEEE Trans. Instrum. Meas. 42, 412–414 (1993).
[CrossRef]

Chandrayan, N.

A. A. Danylov, J. Waldman, A. R. Light, T. M. Goyette, R. H. Giles, X. Qian, N. Chandrayan, W. D. Goodhue, and W. E. Nixon, “Long-term frequency and amplitude stability of a solid-nitrogen-cooled continuous wave THz quantum cascade laser,” Proc. SPIE 8261, 82610-D–82614-D (2012).
[CrossRef]

Chattopadhyay, G.

I. Mehdi, J. Ward, A. Maestrini, G. Chattopadhyay, E. Schlecht, and J. Gill, “Pushing the limits of multiplier-based local oscillator chains,” in Proceedings of the 19th International Symposium on Space Terahertz Technology, Groningen, The Netherlands, 2008, p. 196.

Danylov, A. A.

Dhillon, S. S.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

Erickson, N. R.

Evenson, K. M.

T. D. Varburg and K. M. Evenson, “Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared,” IEEE Trans. Instrum. Meas. 42, 412–414 (1993).
[CrossRef]

Gatesman, A. J.

Giles, R. H.

Gill, J.

I. Mehdi, J. Ward, A. Maestrini, G. Chattopadhyay, E. Schlecht, and J. Gill, “Pushing the limits of multiplier-based local oscillator chains,” in Proceedings of the 19th International Symposium on Space Terahertz Technology, Groningen, The Netherlands, 2008, p. 196.

Goodhue, W. D.

Goyette, T. M.

A. A. Danylov, J. Waldman, A. R. Light, T. M. Goyette, R. H. Giles, X. Qian, N. Chandrayan, W. D. Goodhue, and W. E. Nixon, “Long-term frequency and amplitude stability of a solid-nitrogen-cooled continuous wave THz quantum cascade laser,” Proc. SPIE 8261, 82610-D–82614-D (2012).
[CrossRef]

N. R. Erickson and T. M. Goyette, “Terahertz Schottky-diode balanced mixers,” Proc. SPIE 7215, 721508 (2009).
[CrossRef]

A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, J. Li, W. D. Goodhue, K. J. Linden, and W. E. Nixon, “Terahertz sideband-tuned quantum cascade laser radiation,” Opt. Express 16, 5171–5180 (2008).
[CrossRef]

A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide,” Appl. Opt. 46, 5051–5055 (2007).
[CrossRef]

Li, J.

Light, A. R.

A. A. Danylov, A. R. Light, J. Waldman, N. R. Erickson, X. Qian, and W. D. Goodhue, “2.32  THz quantum cascade laser frequency-locked to the harmonic of a microwave synthesizer source,” Opt. Express 20, 27908 (2012).
[CrossRef]

A. A. Danylov, J. Waldman, A. R. Light, T. M. Goyette, R. H. Giles, X. Qian, N. Chandrayan, W. D. Goodhue, and W. E. Nixon, “Long-term frequency and amplitude stability of a solid-nitrogen-cooled continuous wave THz quantum cascade laser,” Proc. SPIE 8261, 82610-D–82614-D (2012).
[CrossRef]

Linden, K. J.

Maestrini, A.

I. Mehdi, J. Ward, A. Maestrini, G. Chattopadhyay, E. Schlecht, and J. Gill, “Pushing the limits of multiplier-based local oscillator chains,” in Proceedings of the 19th International Symposium on Space Terahertz Technology, Groningen, The Netherlands, 2008, p. 196.

Mehdi, I.

I. Mehdi, J. Ward, A. Maestrini, G. Chattopadhyay, E. Schlecht, and J. Gill, “Pushing the limits of multiplier-based local oscillator chains,” in Proceedings of the 19th International Symposium on Space Terahertz Technology, Groningen, The Netherlands, 2008, p. 196.

Nixon, W. E.

Qian, X.

A. A. Danylov, J. Waldman, A. R. Light, T. M. Goyette, R. H. Giles, X. Qian, N. Chandrayan, W. D. Goodhue, and W. E. Nixon, “Long-term frequency and amplitude stability of a solid-nitrogen-cooled continuous wave THz quantum cascade laser,” Proc. SPIE 8261, 82610-D–82614-D (2012).
[CrossRef]

A. A. Danylov, A. R. Light, J. Waldman, N. R. Erickson, X. Qian, and W. D. Goodhue, “2.32  THz quantum cascade laser frequency-locked to the harmonic of a microwave synthesizer source,” Opt. Express 20, 27908 (2012).
[CrossRef]

Reno, J. L.

Scamarcio, G.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

Schlecht, E.

I. Mehdi, J. Ward, A. Maestrini, G. Chattopadhyay, E. Schlecht, and J. Gill, “Pushing the limits of multiplier-based local oscillator chains,” in Proceedings of the 19th International Symposium on Space Terahertz Technology, Groningen, The Netherlands, 2008, p. 196.

Sirtori, C.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

Spagnolo, V.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

Varburg, T. D.

T. D. Varburg and K. M. Evenson, “Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared,” IEEE Trans. Instrum. Meas. 42, 412–414 (1993).
[CrossRef]

Vitiello, M. S.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

Waldman, J.

Wanke, M. C.

Ward, J.

I. Mehdi, J. Ward, A. Maestrini, G. Chattopadhyay, E. Schlecht, and J. Gill, “Pushing the limits of multiplier-based local oscillator chains,” in Proceedings of the 19th International Symposium on Space Terahertz Technology, Groningen, The Netherlands, 2008, p. 196.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett. 90, 191115 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

T. D. Varburg and K. M. Evenson, “Laser spectroscopy of carbon monoxide: a frequency reference for the far infrared,” IEEE Trans. Instrum. Meas. 42, 412–414 (1993).
[CrossRef]

Opt. Express (2)

Proc. SPIE (2)

N. R. Erickson and T. M. Goyette, “Terahertz Schottky-diode balanced mixers,” Proc. SPIE 7215, 721508 (2009).
[CrossRef]

A. A. Danylov, J. Waldman, A. R. Light, T. M. Goyette, R. H. Giles, X. Qian, N. Chandrayan, W. D. Goodhue, and W. E. Nixon, “Long-term frequency and amplitude stability of a solid-nitrogen-cooled continuous wave THz quantum cascade laser,” Proc. SPIE 8261, 82610-D–82614-D (2012).
[CrossRef]

Other (3)

http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html .

N. R. Erickson and T. M. Goyette, “1.5  THz low noise Schottky-diode mixers,” http://www.sofia.usra.edu/Science/workshops/asilomar_docs/Poster_3.7_Erickson.pdf .

I. Mehdi, J. Ward, A. Maestrini, G. Chattopadhyay, E. Schlecht, and J. Gill, “Pushing the limits of multiplier-based local oscillator chains,” in Proceedings of the 19th International Symposium on Space Terahertz Technology, Groningen, The Netherlands, 2008, p. 196.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the balanced mixer showing the WR10 waveguide that is used as the LO input, as well as the LO feed horn that is not used for harmonic mixing. The horn on the left side is used for the QCL signal input. (b) Photograph of the device (taken from Ref. [3]). Green areas are the GaAs substrate and gold areas are metal on the MMIC chip. (c) Photograph of the mixer block with the W-band waveguide input.

Fig. 2.
Fig. 2.

Setup used for SB spectral measurements.

Fig. 3.
Fig. 3.

Spectra of the low (a) and high (b) frequency SBs produced by applying different microwave frequencies in CW regime with the 2.32 THz QCL operating in a single longitudinal mode.

Fig. 4.
Fig. 4.

2D mode scan of the SBs and unshifted laser.

Fig. 5.
Fig. 5.

Spectra of (a) D2O/HDO at 500 mTorr and (b) CO at 10.1 Torr produced by sweeping the microwave frequency from 2 to 50 GHz.

Fig. 6.
Fig. 6.

(a) CO spectra lower SB sweep and (b) D2O spectra upper SB sweep.

Tables (1)

Tables Icon

Table 1. List of Measured Rotational Transitions of D2O and HDO

Metrics