Abstract

An orthogonal-polarized directional backlight-based three-dimensional (3D) display is proposed. This backlight consists of an orthogonal-polarized backlight and a parallax barrier, so it can project light with different polarized directions to different spatial directions. The backlight can project the pixels with different polarized directions on the two-dimensional display in different directions and form 3D images. With this backlight, the proposed display can provide double horizontal resolution. A prototype of this display is developed. Experiment results show that this display with double horizontal resolution can provide a better display effect than the conventional one, and it can decrease crosstalk to a low level.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38, 31–36 (2005).
    [CrossRef]
  2. T. Kawai, “3D display and applications,” Displays 23, 49–56 (2002).
    [CrossRef]
  3. Q. H. Wang, 3D Display Technology and Device (Science, 2011).
  4. H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
    [CrossRef]
  5. Y. Kim, K. Hong, J. Yeom, J. Hong, J. H. Jung, Y. W. Lee, J. H. Park, and B. Lee, “A frontal projection-type three-dimensional display,” Opt. Express 20, 20130–20138 (2012).
  6. D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
    [CrossRef]
  7. F. Wu, H. Deng, C. G. Luo, D. H. Li, and Q. H. Wang, “Dual-view integral imaging three-dimensional display,” Appl. Opt. 52, 4911–4914 (2013).
    [CrossRef]
  8. J. Dominguez-montes, “Double active parallax barrier for viewing stereoscopic images,” European PatentNo. EP 1462841 A1 (29September2004).
  9. H. Lee and E. D. Lee, “Dual layer parallax barrier-based 3D display device and method,” U.S. PatentNo. 20,120,320,171 A1 (20December2012).
  10. Y. H. Tao, Q. H. Wang, J. Gu, W. X. Zhao, and D. H. Li, “An autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett. 34, 3220–3222 (2009).
    [CrossRef]
  11. G. J. Lv, Q. H. Wang, J. Wang, and W. X. Zhao, “Multi-view 3D display with high brightness based on a parallax barrier,” Chin. Opt. Lett. 11, 121101 (2013).
    [CrossRef]
  12. N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in International Broadcasting Convention (IEEE, 1999), Vol. 2, pp. 497–502.
  13. Y. H. Zhu and T. Zhen, “3D multi-view autostereoscopic display and its key technologies,” in Asia-Pacific Conference on Information Processing (IEEE, 2009), pp. 31–35.
  14. D. U. Kean, D. J. Montgomery, J. Mather, G. Bourhill, and G. R. Jones, “Parallax barrier and multiple view display,” U.S. patentNo. 7,154,653 B2 (26December2006).
  15. K. Sakamoto, R. Kimura, and M. Takaki, “Parallax polarizer barrier stereoscopic 3D display systems,” in Proceedings of the 2005 International Conference on Active Media Technology (IEEE, 2005), pp. 469–474.
  16. Q. H. Wang, Y. H. Tao, W. X. Zhao, and D. H. Li, “A full resolution autostereoscopic 3D display based on polarizer parallax barrier,” Chin. Opt. Lett. 8, 22–23 (2010).
    [CrossRef]
  17. G. J. Lv, W. X. Zhao, D. H. Li, and Q. H. Wang, “Polarizer parallax barrier 3D display with high brightness, resolution, and low crosstalk,” J. Disp. Technol. 10, 120–124 (2014).
    [CrossRef]
  18. G. J. Lv, J. Wang, W. X. Zhao, and Q. H. Wang, “Three-dimensional display based on dual parallax barriers with uniform resolution,” Appl. Opt. 52, 6011–6015 (2013).
    [CrossRef]

2014

G. J. Lv, W. X. Zhao, D. H. Li, and Q. H. Wang, “Polarizer parallax barrier 3D display with high brightness, resolution, and low crosstalk,” J. Disp. Technol. 10, 120–124 (2014).
[CrossRef]

2013

2012

2011

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[CrossRef]

2010

2009

2005

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38, 31–36 (2005).
[CrossRef]

2002

T. Kawai, “3D display and applications,” Displays 23, 49–56 (2002).
[CrossRef]

Beausoleil, R. G.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Bourhill, G.

D. U. Kean, D. J. Montgomery, J. Mather, G. Bourhill, and G. R. Jones, “Parallax barrier and multiple view display,” U.S. patentNo. 7,154,653 B2 (26December2006).

Brug, J.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Char, K.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[CrossRef]

Choi, S. J.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[CrossRef]

Deng, H.

Dodgson, N. A.

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38, 31–36 (2005).
[CrossRef]

N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in International Broadcasting Convention (IEEE, 1999), Vol. 2, pp. 497–502.

Dominguez-montes, J.

J. Dominguez-montes, “Double active parallax barrier for viewing stereoscopic images,” European PatentNo. EP 1462841 A1 (29September2004).

Fattal, D.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Fiorentino, M.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Gu, J.

Hong, J.

Hong, K.

Jones, G. R.

D. U. Kean, D. J. Montgomery, J. Mather, G. Bourhill, and G. R. Jones, “Parallax barrier and multiple view display,” U.S. patentNo. 7,154,653 B2 (26December2006).

Jung, J. H.

Kang, D. S.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[CrossRef]

Kawai, T.

T. Kawai, “3D display and applications,” Displays 23, 49–56 (2002).
[CrossRef]

Kean, D. U.

D. U. Kean, D. J. Montgomery, J. Mather, G. Bourhill, and G. R. Jones, “Parallax barrier and multiple view display,” U.S. patentNo. 7,154,653 B2 (26December2006).

Kim, Y.

Kimura, R.

K. Sakamoto, R. Kimura, and M. Takaki, “Parallax polarizer barrier stereoscopic 3D display systems,” in Proceedings of the 2005 International Conference on Active Media Technology (IEEE, 2005), pp. 469–474.

Lang, S. R.

N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in International Broadcasting Convention (IEEE, 1999), Vol. 2, pp. 497–502.

Lee, B.

Lee, E. D.

H. Lee and E. D. Lee, “Dual layer parallax barrier-based 3D display device and method,” U.S. PatentNo. 20,120,320,171 A1 (20December2012).

Lee, H.

H. Lee and E. D. Lee, “Dual layer parallax barrier-based 3D display device and method,” U.S. PatentNo. 20,120,320,171 A1 (20December2012).

Lee, H. H.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[CrossRef]

Lee, Y. W.

Li, D. H.

Luo, C. G.

Lv, G. J.

Mather, J.

D. U. Kean, D. J. Montgomery, J. Mather, G. Bourhill, and G. R. Jones, “Parallax barrier and multiple view display,” U.S. patentNo. 7,154,653 B2 (26December2006).

Montgomery, D. J.

D. U. Kean, D. J. Montgomery, J. Mather, G. Bourhill, and G. R. Jones, “Parallax barrier and multiple view display,” U.S. patentNo. 7,154,653 B2 (26December2006).

Moore, J. R.

N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in International Broadcasting Convention (IEEE, 1999), Vol. 2, pp. 497–502.

Oh, S. G.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[CrossRef]

Park, J. H.

Park, J. M.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[CrossRef]

Peng, Z.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Sakamoto, K.

K. Sakamoto, R. Kimura, and M. Takaki, “Parallax polarizer barrier stereoscopic 3D display systems,” in Proceedings of the 2005 International Conference on Active Media Technology (IEEE, 2005), pp. 469–474.

Suh, K. Y.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[CrossRef]

Takaki, M.

K. Sakamoto, R. Kimura, and M. Takaki, “Parallax polarizer barrier stereoscopic 3D display systems,” in Proceedings of the 2005 International Conference on Active Media Technology (IEEE, 2005), pp. 469–474.

Tao, Y. H.

Tran, T.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Vo, S.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Wang, J.

Wang, Q. H.

Wu, F.

Yeom, J.

Yoon, H.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[CrossRef]

Zhao, W. X.

Zhen, T.

Y. H. Zhu and T. Zhen, “3D multi-view autostereoscopic display and its key technologies,” in Asia-Pacific Conference on Information Processing (IEEE, 2009), pp. 31–35.

Zhu, Y. H.

Y. H. Zhu and T. Zhen, “3D multi-view autostereoscopic display and its key technologies,” in Asia-Pacific Conference on Information Processing (IEEE, 2009), pp. 31–35.

Appl. Opt.

Chin. Opt. Lett.

Computer

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer 38, 31–36 (2005).
[CrossRef]

Displays

T. Kawai, “3D display and applications,” Displays 23, 49–56 (2002).
[CrossRef]

J. Disp. Technol.

G. J. Lv, W. X. Zhao, D. H. Li, and Q. H. Wang, “Polarizer parallax barrier 3D display with high brightness, resolution, and low crosstalk,” J. Disp. Technol. 10, 120–124 (2014).
[CrossRef]

Nat. Commun.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[CrossRef]

Nature

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Q. H. Wang, 3D Display Technology and Device (Science, 2011).

J. Dominguez-montes, “Double active parallax barrier for viewing stereoscopic images,” European PatentNo. EP 1462841 A1 (29September2004).

H. Lee and E. D. Lee, “Dual layer parallax barrier-based 3D display device and method,” U.S. PatentNo. 20,120,320,171 A1 (20December2012).

N. A. Dodgson, J. R. Moore, and S. R. Lang, “Multi-view autostereoscopic 3D display,” in International Broadcasting Convention (IEEE, 1999), Vol. 2, pp. 497–502.

Y. H. Zhu and T. Zhen, “3D multi-view autostereoscopic display and its key technologies,” in Asia-Pacific Conference on Information Processing (IEEE, 2009), pp. 31–35.

D. U. Kean, D. J. Montgomery, J. Mather, G. Bourhill, and G. R. Jones, “Parallax barrier and multiple view display,” U.S. patentNo. 7,154,653 B2 (26December2006).

K. Sakamoto, R. Kimura, and M. Takaki, “Parallax polarizer barrier stereoscopic 3D display systems,” in Proceedings of the 2005 International Conference on Active Media Technology (IEEE, 2005), pp. 469–474.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Structure of the proposed 3D display.

Fig. 2.
Fig. 2.

Principle of the proposed 3D display.

Fig. 3.
Fig. 3.

Normalized luminance distribution of the orthogonal-polarized directional backlight.

Fig. 4.
Fig. 4.

Pictures shot from different spatial directions for the proposed and conventional 3D displays. (a) View 2 for the proposed 3D display. (b) View 4 for the proposed 3D display. (c) View 8 for the proposed 3D display. (d) View 8 for the conventional 3D display.

Fig. 5.
Fig. 5.

Crosstalk for the proposed and dual parallax barriers-based 3D displays. (a) Proposed method. (b) Dual parallax barriers method.

Fig. 6.
Fig. 6.

Luminance distribution for the proposed and conventional 3D displays. (a) Proposed 3D display. (b) Conventional 3D display.

Tables (1)

Tables Icon

Table 1. Parameters of the Prototype for the Proposed 3D Display

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2l1l2=d1+d2+d3d2+d3,
2E6l1=d3+d2d1,
4l1E=d1+d2d3,
6l14l3=d1+d2+d3d3.

Metrics