Abstract

In free-space optical link (FSOL), atmospheric turbulence causes fluctuations in both intensity and phase of the received beam and impairing link performance. The beam motion is one of the main causes for major power loss. This paper presents an investigation on the performance of two types of controller designed for aiming a laser beam to be at a particular spot under dynamic disturbances. The multiple experiment observability nonlinear input-output data mapping is used as the principal components for controllers design. The first design is based on the Taguchi method while the second is artificial neural network method. These controllers process the beam location information from a static linear map of 2D plane: optoelectronic position detector, as observer, and then generate the necessary outputs to steer the beam with a microelectromechanical mirror: fast steering mirror. The beam centroid is computed using monopulse algorithm. Evidence of suitability and effectiveness of the proposed controllers are comprehensively assessed and quantitatively measured in terms of coefficient of correlation, correction speed, control exactness, centroid displacement, and stability of the receiver signal through the experimental results from the FSO link setup established for the horizontal range of 0.5 km at an altitude of 15.25 m. The test field type is open flat terrain, grass, and few isolated obstacles.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Majumdar and J. C. Ricklin, in Optical and Fiber Communications Reports Free-Space Laser Communications: Principles and Advances (Springer, 2008), pp. 247–271.
  2. H. Hemmati, in Near-Earth Laser Communication (CRC Press, 2009), pp. 59–96.
  3. M. Yuksel, J. Akella, S. Kalyanaraman, and P. Dutta, “Free-space optical mobile adhoc networks: auto—configurable building blocks,” Wireless Netw. 15, 295–312 (2009).
  4. P. T. Dat, C. B. Naila, P. Liu, K. Wakamori, M. Matsumoto, and K. Tsukamoto, “Next generation free space optics systems for ubiquitous communications,” PIERS Online 7, 75–80 (2011).
  5. C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light emitting diode (LED) optical wireless communication systems,” IEEE Photon. J. 5, 7900307 (2013).
  6. S. Arnon, “Optimization of urban optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626–629 (2003).
    [CrossRef]
  7. N. Kumar and A. K. Rana, “Impact of various parameters on the performance of free space optics communication system,” Optik 124, 5774–5776 (2013).
    [CrossRef]
  8. N. O. Perez-Arancibia, J. S. Gibson, and T.-C. Tsao, “Observer based intensity–feedback control for laser beam pointing and tracking,” IEEE Trans. Control Syst. Technol. 20, 31–47 (2012).
  9. J. Wang, J. M. Kahn, and K. Y. Lau, “Minimization of acquisition time in short-range free-space optical communication,” Appl. Opt. 41, 7592–7602 (2002).
    [CrossRef]
  10. G. Konesky, “Application of adaptive optics to a Moon-to-Earth optical data link,” in Proceedings of the IEEE Aerospace Conference (IEEE, 2006), pp. 1–7.
  11. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
    [CrossRef]
  12. W. R. Leeb, “Space laser communications: systems, technologies and applications,” Rev. Laser Eng. 28, 804–808 (2000).
  13. I. B. Djordjevic, “Heterogeneous transparent optical networking based on coded OAM modulation,” IEEE Photon. J. 3, 531–537 (2011).
  14. H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik 121, 1789–1793 (2010).
    [CrossRef]
  15. C. Si and Y. Zhang, “Beam wander of quantization beam in a non-Kolmogorov turbulent atmosphere,” Optik 124, 1175–1178 (2013).
    [CrossRef]
  16. F. Fidler, M. Knapek, J. Horwath, and W. R. Leep, “Optical communications for high-altitude platforms,” IEEE J. Sel. Top. Quantum Electron. 16, 1058–1070 (2010).
    [CrossRef]
  17. F. D. Kashani, M. R. Hedayati Rad, E. Kazemian, and Sh. Golomohammady, “Reliability analysis of an auto-tracked FSO link under adverse weather condition,” Optik 124, 5462–5467 (2013).
    [CrossRef]
  18. W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik 125, 324–328 (2014).
    [CrossRef]
  19. M. Toyoshima, N. Takahashi, T. Jono, T. Yamawaki, K. Nakagawa, and A. Yamamoto, “Mutual alignment errors due to the variation of wave-front aberrations in a free-space laser communication link,” Opt. Express 9, 592–602 (2001).
    [CrossRef]
  20. S. Lee and G. G. Ortiz, “Inertial sensor assisted acquisition, tracking and pointing for high data rate free space optical communications,” in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (IEEE, 2003), pp. 87–88.
  21. Y. Lu, D. Fan, and Z. Zhang, “Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror,” Optik 124, 2443–2449 (2013).
    [CrossRef]
  22. T.-Y. Yang, J. Gourlay, and A. C. Walker, “Adaptive alignment packaging for 2-D arrays of free-space optical interconnected optoelectronic systems,” IEEE Trans. Adv. Packag. 25, 54–63 (2002).
  23. J.-C. Shen, W.-Y. Jywe, H.-K. Chiang, and Y.-L. Shu, “Precision tracking control of a piezoelectric actuated system,” in Proceedings of the 15th Mediterranean Conference on Control and Automation (IEEE, 2007), pp. 1–6.
  24. R. J. Wood, E. Steltz, and R. S. Fearing, “Nonlinear performance limits for high energy density piezo electric bending actuators,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2005), pp. 3633–3640.
  25. M. T. Hagan and H. B. Demuth, “Neural networks for control, invited tutorial,” in American Control Conference (IEEE, 1999), pp. 1642–1656.
  26. W.-F. Xie, J. Fu, H. Yao, and C. Y. Su, “Neural network-based adaptive control of piezoelectric actuators with unknown hysteresis,” Int. J. Adapt. Control Signal Process. 23, 30–54 (2009).
  27. C. Rembe and R. S. Muller, “Measurement system for full-three dimensional motion characterization of MEMS,” J. Microelectromech. Syst. 11, 479–488 (2002).
    [CrossRef]

2014 (1)

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik 125, 324–328 (2014).
[CrossRef]

2013 (5)

Y. Lu, D. Fan, and Z. Zhang, “Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror,” Optik 124, 2443–2449 (2013).
[CrossRef]

C. Si and Y. Zhang, “Beam wander of quantization beam in a non-Kolmogorov turbulent atmosphere,” Optik 124, 1175–1178 (2013).
[CrossRef]

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light emitting diode (LED) optical wireless communication systems,” IEEE Photon. J. 5, 7900307 (2013).

N. Kumar and A. K. Rana, “Impact of various parameters on the performance of free space optics communication system,” Optik 124, 5774–5776 (2013).
[CrossRef]

F. D. Kashani, M. R. Hedayati Rad, E. Kazemian, and Sh. Golomohammady, “Reliability analysis of an auto-tracked FSO link under adverse weather condition,” Optik 124, 5462–5467 (2013).
[CrossRef]

2012 (1)

N. O. Perez-Arancibia, J. S. Gibson, and T.-C. Tsao, “Observer based intensity–feedback control for laser beam pointing and tracking,” IEEE Trans. Control Syst. Technol. 20, 31–47 (2012).

2011 (2)

P. T. Dat, C. B. Naila, P. Liu, K. Wakamori, M. Matsumoto, and K. Tsukamoto, “Next generation free space optics systems for ubiquitous communications,” PIERS Online 7, 75–80 (2011).

I. B. Djordjevic, “Heterogeneous transparent optical networking based on coded OAM modulation,” IEEE Photon. J. 3, 531–537 (2011).

2010 (2)

H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik 121, 1789–1793 (2010).
[CrossRef]

F. Fidler, M. Knapek, J. Horwath, and W. R. Leep, “Optical communications for high-altitude platforms,” IEEE J. Sel. Top. Quantum Electron. 16, 1058–1070 (2010).
[CrossRef]

2009 (3)

M. Yuksel, J. Akella, S. Kalyanaraman, and P. Dutta, “Free-space optical mobile adhoc networks: auto—configurable building blocks,” Wireless Netw. 15, 295–312 (2009).

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[CrossRef]

W.-F. Xie, J. Fu, H. Yao, and C. Y. Su, “Neural network-based adaptive control of piezoelectric actuators with unknown hysteresis,” Int. J. Adapt. Control Signal Process. 23, 30–54 (2009).

2003 (1)

S. Arnon, “Optimization of urban optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626–629 (2003).
[CrossRef]

2002 (3)

J. Wang, J. M. Kahn, and K. Y. Lau, “Minimization of acquisition time in short-range free-space optical communication,” Appl. Opt. 41, 7592–7602 (2002).
[CrossRef]

T.-Y. Yang, J. Gourlay, and A. C. Walker, “Adaptive alignment packaging for 2-D arrays of free-space optical interconnected optoelectronic systems,” IEEE Trans. Adv. Packag. 25, 54–63 (2002).

C. Rembe and R. S. Muller, “Measurement system for full-three dimensional motion characterization of MEMS,” J. Microelectromech. Syst. 11, 479–488 (2002).
[CrossRef]

2001 (1)

2000 (1)

W. R. Leeb, “Space laser communications: systems, technologies and applications,” Rev. Laser Eng. 28, 804–808 (2000).

Akella, J.

M. Yuksel, J. Akella, S. Kalyanaraman, and P. Dutta, “Free-space optical mobile adhoc networks: auto—configurable building blocks,” Wireless Netw. 15, 295–312 (2009).

Arimoto, Y.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[CrossRef]

Arnon, S.

S. Arnon, “Optimization of urban optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626–629 (2003).
[CrossRef]

Cao, J.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik 125, 324–328 (2014).
[CrossRef]

Chi, X.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik 125, 324–328 (2014).
[CrossRef]

Chiang, H.-K.

J.-C. Shen, W.-Y. Jywe, H.-K. Chiang, and Y.-L. Shu, “Precision tracking control of a piezoelectric actuated system,” in Proceedings of the 15th Mediterranean Conference on Control and Automation (IEEE, 2007), pp. 1–6.

Chow, C. W.

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light emitting diode (LED) optical wireless communication systems,” IEEE Photon. J. 5, 7900307 (2013).

Ciaramella, E.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[CrossRef]

Contestabile, G.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[CrossRef]

D’Errico, A.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[CrossRef]

Dat, P. T.

P. T. Dat, C. B. Naila, P. Liu, K. Wakamori, M. Matsumoto, and K. Tsukamoto, “Next generation free space optics systems for ubiquitous communications,” PIERS Online 7, 75–80 (2011).

Demuth, H. B.

M. T. Hagan and H. B. Demuth, “Neural networks for control, invited tutorial,” in American Control Conference (IEEE, 1999), pp. 1642–1656.

Djordjevic, I. B.

I. B. Djordjevic, “Heterogeneous transparent optical networking based on coded OAM modulation,” IEEE Photon. J. 3, 531–537 (2011).

Dutta, P.

M. Yuksel, J. Akella, S. Kalyanaraman, and P. Dutta, “Free-space optical mobile adhoc networks: auto—configurable building blocks,” Wireless Netw. 15, 295–312 (2009).

Fan, D.

Y. Lu, D. Fan, and Z. Zhang, “Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror,” Optik 124, 2443–2449 (2013).
[CrossRef]

Fearing, R. S.

R. J. Wood, E. Steltz, and R. S. Fearing, “Nonlinear performance limits for high energy density piezo electric bending actuators,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2005), pp. 3633–3640.

Fidler, F.

F. Fidler, M. Knapek, J. Horwath, and W. R. Leep, “Optical communications for high-altitude platforms,” IEEE J. Sel. Top. Quantum Electron. 16, 1058–1070 (2010).
[CrossRef]

Fu, J.

W.-F. Xie, J. Fu, H. Yao, and C. Y. Su, “Neural network-based adaptive control of piezoelectric actuators with unknown hysteresis,” Int. J. Adapt. Control Signal Process. 23, 30–54 (2009).

Gibson, J. S.

N. O. Perez-Arancibia, J. S. Gibson, and T.-C. Tsao, “Observer based intensity–feedback control for laser beam pointing and tracking,” IEEE Trans. Control Syst. Technol. 20, 31–47 (2012).

Golomohammady, Sh.

F. D. Kashani, M. R. Hedayati Rad, E. Kazemian, and Sh. Golomohammady, “Reliability analysis of an auto-tracked FSO link under adverse weather condition,” Optik 124, 5462–5467 (2013).
[CrossRef]

Gourlay, J.

T.-Y. Yang, J. Gourlay, and A. C. Walker, “Adaptive alignment packaging for 2-D arrays of free-space optical interconnected optoelectronic systems,” IEEE Trans. Adv. Packag. 25, 54–63 (2002).

Guarino, V.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[CrossRef]

Hagan, M. T.

M. T. Hagan and H. B. Demuth, “Neural networks for control, invited tutorial,” in American Control Conference (IEEE, 1999), pp. 1642–1656.

Hedayati Rad, M. R.

F. D. Kashani, M. R. Hedayati Rad, E. Kazemian, and Sh. Golomohammady, “Reliability analysis of an auto-tracked FSO link under adverse weather condition,” Optik 124, 5462–5467 (2013).
[CrossRef]

Hemmati, H.

H. Hemmati, in Near-Earth Laser Communication (CRC Press, 2009), pp. 59–96.

Horwath, J.

F. Fidler, M. Knapek, J. Horwath, and W. R. Leep, “Optical communications for high-altitude platforms,” IEEE J. Sel. Top. Quantum Electron. 16, 1058–1070 (2010).
[CrossRef]

Huang, P. Y.

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light emitting diode (LED) optical wireless communication systems,” IEEE Photon. J. 5, 7900307 (2013).

Jono, T.

Jywe, W.-Y.

J.-C. Shen, W.-Y. Jywe, H.-K. Chiang, and Y.-L. Shu, “Precision tracking control of a piezoelectric actuated system,” in Proceedings of the 15th Mediterranean Conference on Control and Automation (IEEE, 2007), pp. 1–6.

Kahn, J. M.

Kalyanaraman, S.

M. Yuksel, J. Akella, S. Kalyanaraman, and P. Dutta, “Free-space optical mobile adhoc networks: auto—configurable building blocks,” Wireless Netw. 15, 295–312 (2009).

Kashani, F. D.

F. D. Kashani, M. R. Hedayati Rad, E. Kazemian, and Sh. Golomohammady, “Reliability analysis of an auto-tracked FSO link under adverse weather condition,” Optik 124, 5462–5467 (2013).
[CrossRef]

Kazemian, E.

F. D. Kashani, M. R. Hedayati Rad, E. Kazemian, and Sh. Golomohammady, “Reliability analysis of an auto-tracked FSO link under adverse weather condition,” Optik 124, 5462–5467 (2013).
[CrossRef]

Knapek, M.

F. Fidler, M. Knapek, J. Horwath, and W. R. Leep, “Optical communications for high-altitude platforms,” IEEE J. Sel. Top. Quantum Electron. 16, 1058–1070 (2010).
[CrossRef]

Konesky, G.

G. Konesky, “Application of adaptive optics to a Moon-to-Earth optical data link,” in Proceedings of the IEEE Aerospace Conference (IEEE, 2006), pp. 1–7.

Kumar, N.

N. Kumar and A. K. Rana, “Impact of various parameters on the performance of free space optics communication system,” Optik 124, 5774–5776 (2013).
[CrossRef]

Lau, K. Y.

Lee, S.

S. Lee and G. G. Ortiz, “Inertial sensor assisted acquisition, tracking and pointing for high data rate free space optical communications,” in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (IEEE, 2003), pp. 87–88.

Leeb, W. R.

W. R. Leeb, “Space laser communications: systems, technologies and applications,” Rev. Laser Eng. 28, 804–808 (2000).

Leep, W. R.

F. Fidler, M. Knapek, J. Horwath, and W. R. Leep, “Optical communications for high-altitude platforms,” IEEE J. Sel. Top. Quantum Electron. 16, 1058–1070 (2010).
[CrossRef]

Li, X.

H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik 121, 1789–1793 (2010).
[CrossRef]

Liu, P.

P. T. Dat, C. B. Naila, P. Liu, K. Wakamori, M. Matsumoto, and K. Tsukamoto, “Next generation free space optics systems for ubiquitous communications,” PIERS Online 7, 75–80 (2011).

Liu, W.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik 125, 324–328 (2014).
[CrossRef]

Liu, Y. F.

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light emitting diode (LED) optical wireless communication systems,” IEEE Photon. J. 5, 7900307 (2013).

Lu, Y.

Y. Lu, D. Fan, and Z. Zhang, “Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror,” Optik 124, 2443–2449 (2013).
[CrossRef]

Lv, Y.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik 125, 324–328 (2014).
[CrossRef]

Majumdar, A. K.

A. K. Majumdar and J. C. Ricklin, in Optical and Fiber Communications Reports Free-Space Laser Communications: Principles and Advances (Springer, 2008), pp. 247–271.

Matsumoto, M.

P. T. Dat, C. B. Naila, P. Liu, K. Wakamori, M. Matsumoto, and K. Tsukamoto, “Next generation free space optics systems for ubiquitous communications,” PIERS Online 7, 75–80 (2011).

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[CrossRef]

Muller, R. S.

C. Rembe and R. S. Muller, “Measurement system for full-three dimensional motion characterization of MEMS,” J. Microelectromech. Syst. 11, 479–488 (2002).
[CrossRef]

Naila, C. B.

P. T. Dat, C. B. Naila, P. Liu, K. Wakamori, M. Matsumoto, and K. Tsukamoto, “Next generation free space optics systems for ubiquitous communications,” PIERS Online 7, 75–80 (2011).

Nakagawa, K.

Ortiz, G. G.

S. Lee and G. G. Ortiz, “Inertial sensor assisted acquisition, tracking and pointing for high data rate free space optical communications,” in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (IEEE, 2003), pp. 87–88.

Perez-Arancibia, N. O.

N. O. Perez-Arancibia, J. S. Gibson, and T.-C. Tsao, “Observer based intensity–feedback control for laser beam pointing and tracking,” IEEE Trans. Control Syst. Technol. 20, 31–47 (2012).

Presi, M.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[CrossRef]

Rana, A. K.

N. Kumar and A. K. Rana, “Impact of various parameters on the performance of free space optics communication system,” Optik 124, 5774–5776 (2013).
[CrossRef]

Rembe, C.

C. Rembe and R. S. Muller, “Measurement system for full-three dimensional motion characterization of MEMS,” J. Microelectromech. Syst. 11, 479–488 (2002).
[CrossRef]

Ricklin, J. C.

A. K. Majumdar and J. C. Ricklin, in Optical and Fiber Communications Reports Free-Space Laser Communications: Principles and Advances (Springer, 2008), pp. 247–271.

Shen, J.-C.

J.-C. Shen, W.-Y. Jywe, H.-K. Chiang, and Y.-L. Shu, “Precision tracking control of a piezoelectric actuated system,” in Proceedings of the 15th Mediterranean Conference on Control and Automation (IEEE, 2007), pp. 1–6.

Shi, W.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik 125, 324–328 (2014).
[CrossRef]

Shu, Y.-L.

J.-C. Shen, W.-Y. Jywe, H.-K. Chiang, and Y.-L. Shu, “Precision tracking control of a piezoelectric actuated system,” in Proceedings of the 15th Mediterranean Conference on Control and Automation (IEEE, 2007), pp. 1–6.

Si, C.

C. Si and Y. Zhang, “Beam wander of quantization beam in a non-Kolmogorov turbulent atmosphere,” Optik 124, 1175–1178 (2013).
[CrossRef]

Steltz, E.

R. J. Wood, E. Steltz, and R. S. Fearing, “Nonlinear performance limits for high energy density piezo electric bending actuators,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2005), pp. 3633–3640.

Su, C. Y.

W.-F. Xie, J. Fu, H. Yao, and C. Y. Su, “Neural network-based adaptive control of piezoelectric actuators with unknown hysteresis,” Int. J. Adapt. Control Signal Process. 23, 30–54 (2009).

Takahashi, N.

Toyoshima, M.

Tsao, T.-C.

N. O. Perez-Arancibia, J. S. Gibson, and T.-C. Tsao, “Observer based intensity–feedback control for laser beam pointing and tracking,” IEEE Trans. Control Syst. Technol. 20, 31–47 (2012).

Tsukamoto, K.

P. T. Dat, C. B. Naila, P. Liu, K. Wakamori, M. Matsumoto, and K. Tsukamoto, “Next generation free space optics systems for ubiquitous communications,” PIERS Online 7, 75–80 (2011).

Wakamori, K.

P. T. Dat, C. B. Naila, P. Liu, K. Wakamori, M. Matsumoto, and K. Tsukamoto, “Next generation free space optics systems for ubiquitous communications,” PIERS Online 7, 75–80 (2011).

Walker, A. C.

T.-Y. Yang, J. Gourlay, and A. C. Walker, “Adaptive alignment packaging for 2-D arrays of free-space optical interconnected optoelectronic systems,” IEEE Trans. Adv. Packag. 25, 54–63 (2002).

Wang, J.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik 125, 324–328 (2014).
[CrossRef]

J. Wang, J. M. Kahn, and K. Y. Lau, “Minimization of acquisition time in short-range free-space optical communication,” Appl. Opt. 41, 7592–7602 (2002).
[CrossRef]

Wang, S.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik 125, 324–328 (2014).
[CrossRef]

Wood, R. J.

R. J. Wood, E. Steltz, and R. S. Fearing, “Nonlinear performance limits for high energy density piezo electric bending actuators,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2005), pp. 3633–3640.

Wu, H.

H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik 121, 1789–1793 (2010).
[CrossRef]

Xie, W.-F.

W.-F. Xie, J. Fu, H. Yao, and C. Y. Su, “Neural network-based adaptive control of piezoelectric actuators with unknown hysteresis,” Int. J. Adapt. Control Signal Process. 23, 30–54 (2009).

Yamamoto, A.

Yamawaki, T.

Yan, H.

H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik 121, 1789–1793 (2010).
[CrossRef]

Yang, T.-Y.

T.-Y. Yang, J. Gourlay, and A. C. Walker, “Adaptive alignment packaging for 2-D arrays of free-space optical interconnected optoelectronic systems,” IEEE Trans. Adv. Packag. 25, 54–63 (2002).

Yao, H.

W.-F. Xie, J. Fu, H. Yao, and C. Y. Su, “Neural network-based adaptive control of piezoelectric actuators with unknown hysteresis,” Int. J. Adapt. Control Signal Process. 23, 30–54 (2009).

Yao, K.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik 125, 324–328 (2014).
[CrossRef]

Yeh, C. H.

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light emitting diode (LED) optical wireless communication systems,” IEEE Photon. J. 5, 7900307 (2013).

Yuksel, M.

M. Yuksel, J. Akella, S. Kalyanaraman, and P. Dutta, “Free-space optical mobile adhoc networks: auto—configurable building blocks,” Wireless Netw. 15, 295–312 (2009).

Zhang, Y.

C. Si and Y. Zhang, “Beam wander of quantization beam in a non-Kolmogorov turbulent atmosphere,” Optik 124, 1175–1178 (2013).
[CrossRef]

Zhang, Z.

Y. Lu, D. Fan, and Z. Zhang, “Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror,” Optik 124, 2443–2449 (2013).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Areas Commun. (1)

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28  terabit/s (32×40  Gbit/s) WDM transmission system for free space optical communications,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Fidler, M. Knapek, J. Horwath, and W. R. Leep, “Optical communications for high-altitude platforms,” IEEE J. Sel. Top. Quantum Electron. 16, 1058–1070 (2010).
[CrossRef]

IEEE Photon. J. (2)

I. B. Djordjevic, “Heterogeneous transparent optical networking based on coded OAM modulation,” IEEE Photon. J. 3, 531–537 (2011).

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Mitigation of optical background noise in light emitting diode (LED) optical wireless communication systems,” IEEE Photon. J. 5, 7900307 (2013).

IEEE Trans. Adv. Packag. (1)

T.-Y. Yang, J. Gourlay, and A. C. Walker, “Adaptive alignment packaging for 2-D arrays of free-space optical interconnected optoelectronic systems,” IEEE Trans. Adv. Packag. 25, 54–63 (2002).

IEEE Trans. Control Syst. Technol. (1)

N. O. Perez-Arancibia, J. S. Gibson, and T.-C. Tsao, “Observer based intensity–feedback control for laser beam pointing and tracking,” IEEE Trans. Control Syst. Technol. 20, 31–47 (2012).

IEEE Trans. Wireless Commun. (1)

S. Arnon, “Optimization of urban optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626–629 (2003).
[CrossRef]

Int. J. Adapt. Control Signal Process. (1)

W.-F. Xie, J. Fu, H. Yao, and C. Y. Su, “Neural network-based adaptive control of piezoelectric actuators with unknown hysteresis,” Int. J. Adapt. Control Signal Process. 23, 30–54 (2009).

J. Microelectromech. Syst. (1)

C. Rembe and R. S. Muller, “Measurement system for full-three dimensional motion characterization of MEMS,” J. Microelectromech. Syst. 11, 479–488 (2002).
[CrossRef]

Opt. Express (1)

Optik (6)

F. D. Kashani, M. R. Hedayati Rad, E. Kazemian, and Sh. Golomohammady, “Reliability analysis of an auto-tracked FSO link under adverse weather condition,” Optik 124, 5462–5467 (2013).
[CrossRef]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication systems,” Optik 125, 324–328 (2014).
[CrossRef]

H. Wu, H. Yan, and X. Li, “Modal correction for fiber-coupling efficiency in free-space optical communication systems through atmospheric turbulence,” Optik 121, 1789–1793 (2010).
[CrossRef]

C. Si and Y. Zhang, “Beam wander of quantization beam in a non-Kolmogorov turbulent atmosphere,” Optik 124, 1175–1178 (2013).
[CrossRef]

N. Kumar and A. K. Rana, “Impact of various parameters on the performance of free space optics communication system,” Optik 124, 5774–5776 (2013).
[CrossRef]

Y. Lu, D. Fan, and Z. Zhang, “Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror,” Optik 124, 2443–2449 (2013).
[CrossRef]

PIERS Online (1)

P. T. Dat, C. B. Naila, P. Liu, K. Wakamori, M. Matsumoto, and K. Tsukamoto, “Next generation free space optics systems for ubiquitous communications,” PIERS Online 7, 75–80 (2011).

Rev. Laser Eng. (1)

W. R. Leeb, “Space laser communications: systems, technologies and applications,” Rev. Laser Eng. 28, 804–808 (2000).

Wireless Netw. (1)

M. Yuksel, J. Akella, S. Kalyanaraman, and P. Dutta, “Free-space optical mobile adhoc networks: auto—configurable building blocks,” Wireless Netw. 15, 295–312 (2009).

Other (7)

A. K. Majumdar and J. C. Ricklin, in Optical and Fiber Communications Reports Free-Space Laser Communications: Principles and Advances (Springer, 2008), pp. 247–271.

H. Hemmati, in Near-Earth Laser Communication (CRC Press, 2009), pp. 59–96.

G. Konesky, “Application of adaptive optics to a Moon-to-Earth optical data link,” in Proceedings of the IEEE Aerospace Conference (IEEE, 2006), pp. 1–7.

S. Lee and G. G. Ortiz, “Inertial sensor assisted acquisition, tracking and pointing for high data rate free space optical communications,” in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (IEEE, 2003), pp. 87–88.

J.-C. Shen, W.-Y. Jywe, H.-K. Chiang, and Y.-L. Shu, “Precision tracking control of a piezoelectric actuated system,” in Proceedings of the 15th Mediterranean Conference on Control and Automation (IEEE, 2007), pp. 1–6.

R. J. Wood, E. Steltz, and R. S. Fearing, “Nonlinear performance limits for high energy density piezo electric bending actuators,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2005), pp. 3633–3640.

M. T. Hagan and H. B. Demuth, “Neural networks for control, invited tutorial,” in American Control Conference (IEEE, 1999), pp. 1642–1656.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Photograph of Laser Communication Laboratory (LCL) facility: FSOL receiver (left) and transmitter (right) laboratories developed at information technology block and tower constructed for this work, respectively.

Fig. 2.
Fig. 2.

Schematic of FSOL experimental setup for 0.5 km optical link: (left) receiver with beam steering optoelectronic assembly, and (right) transmitter (red arrow line, optical path; black arrow line, signal path).

Fig. 3.
Fig. 3.

Beam spot of 4 mm diameter (a) centered (0, 0) and (b) displaced (Xdist, Ydist) beam spot on the optoelectronic position detector surface.

Fig. 4.
Fig. 4.

Sensitivity measurement and calibration of OPD-PTQ100 for the beam position drift from left center to right center on x-axis (VEx) and from top center to bottom center on y-axis (VEy) with curve-fit model.

Fig. 5.
Fig. 5.

Open-loop sensitivity measurement and calibration of piezo-amplifier for (a) x-channel, (b) y-channel with curve-fit models, and piezo platform for (c) x-channel from left side to right side and (d) y-channel from top side to bottom side.

Fig. 6.
Fig. 6.

One pattern of measured hysteresis loop obtained for cyclic variation of control signal in process nonlinearity testing.

Fig. 7.
Fig. 7.

Proposed structure of neurocontroller with 2–12–9–2 multilayer perceptron model.

Fig. 8.
Fig. 8.

Error rate for the learning function (error rate versus iteration). The learning procedure is stopped when the final error is below the goal.

Fig. 9.
Fig. 9.

One pattern of neural network structure with coded weights and bias values obtained from backpropagation training algorithm.

Fig. 10.
Fig. 10.

Normal probability plot of considered full model: percent versus residual for x- (left) and y- (right) channel control.

Fig. 11.
Fig. 11.

Normal probability plot of proposed neural controller: percent versus residual for x- (left) and y- (right) channel control.

Fig. 12.
Fig. 12.

Open-loop plant response for multiple set-point errors: reference control voltages are (a) 0.21573.82.31.6V for x-channel and (b) 0.163425.31.6V for y-channel.

Fig. 13.
Fig. 13.

Percentage of error of control signal predicted by the neurocontroller in open-loop configuration for x- and y-channel.

Fig. 14.
Fig. 14.

Figures in the left show compass plot of time series laser beam spot centroid motion on OPD with beam steering control off (red) and on (black) conditions. Figures in the right show the corresponding histogram of hypotenuse distance (from plane center to beam centroid).

Fig. 15.
Fig. 15.

Figures in the left show the time series of photodiode output without (top) and with (bottom) beam steering, and those on the right show the corresponding histogram.

Tables (4)

Tables Icon

Table 1. Experimental Design and Their Responses (Observed Values)

Tables Icon

Table 2. R2 Values of Response Surface Models and Neural Controller for Cx and Cy

Tables Icon

Table 3. Results from Confirmatory Experiment (VRef=10, 5, 8 V)

Tables Icon

Table 4. Validation Test Results of Developed Response Surface Model (Full) and Neural Controller for Cx and Cy

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

VEx={(VA+VC)(VB+VD)}VEy={(VA+VB)(VC+VD)}.
VRef=(VA+VB+VC+VD).
xdist=2(VEx/VRef)andydist=+2(VEy/VRef),
γ=(xdist)2+(ydist)2,
ϑ={0ifVEx=VEy=00ifVEx<0&VEy=03.1415ifVEx>0&VEy=01.57070ifVEx=0&VEy=04.7123ifVEx=0&VEy=0arctan(ydist/xdist)ifVEx<0&VEy>0arctan(ydist/xdist)+1.5707ifVEx>0&VEy>0arctan(ydist/xdist)+3.1415ifVEx>0&VEy<0arctan(ydist/xdist)+4.7123ifVEx<0&VEy<0.
σEx=(2048((VEx+10)/0.00489))(((VRef+10)/0.00489)2048)σEy=(((VEy+10)/0.00489)2048)(((VRef+10)/0.00489)2048),
Cx={0.09606226.79259σEx+0.0596296σEy+0.0045291σEx2+0.197022σExσEy+0.0132564σEy2Cy={0.078861+0.0194074σEx7.02274σEy+0.0470611Ex20.0298667σExσEy+0.136262σEy2.
MSE=12j=1N(TpjOpj)2,
(w111w1211,w121w1221,w112w1122,w212w2122,w312w3122,w412w4122,w512w5122,w612w6122,w712w7122,w812w8122,w912w9122,w113w193,w213w293,b11b121,b12b92,b13andb23)
nj1=jiwji1xi+bj1,j1to12,i1to2
aj1=f(nj1)
nk2=kjaj1wkj2+bk2,k1to9
ak2=f(nk2)
ni3=ikak2wik3+bi3
a13=f(n13),a23=f(n23)
Δi3=(tiai3)f(ni3)
δk2=kiΔi3wik3
Δk2=δk2f(nk2)
δj1=jkΔk2wjk2
Δj1=δj1f(nj1)
Δwji1=αΔj1xi,Δwkj2=αΔk2aj1,Δwik3=αΔl3ak2,Δbj1=αΔj1,Δbk2=αΔk2,Δbil3=αΔj1
wji1(n+1)=wji1(n)+Δwji1,wkj2(n+1)=wkj2(n)+Δwkj2,wlk3(n+1)=wlk3(n)+Δwlk3,bj1(n+1)=bj1(n)+Δbj1,bk2(n+1)=bk2(n)+Δbk2,bi3(n+1)=bi3(n)+Δbi3

Metrics