Abstract

We propose a multichannel imaging system that combines the principles of an insect’s compound eye and the human eye. The optical system enables a reduction in track length of the imaging device to achieve miniaturization. The multichannel structure is achieved by a curved microlens array, and a Hypergon lens is used as the main lens to simulate the human eye, achieving large field of view (FOV). With this architecture, each microlens of the array transmits a segment of the overall FOV. The partial images are recorded in separate channels and stitched together to form the final image of the whole FOV by image processing. The design is 2.7 mm thick, with 59 channels; the 100°×80° full FOV is optimized using ZEMAX ray-tracing software on an image plane. The image plane size is 4.53mm×3.29mm. Given the recent progress in the fabrication of microlenses, this image system has the potential to be commercialized in the near future.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Land, “The optics of animal eyes,” Contemp. Phys. 29, 435–455 (1988).
    [CrossRef]
  2. J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes—topical review,” Bioinsp. Biomim. 1, R1–R16 (2006).
  3. S. Banerjee and L. Hazra, “Thin lens design of Cooke triplet lenses: application of a global optimization technique,” Proc. SPIE 3430, 175–183 (1998).
    [CrossRef]
  4. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005).
    [CrossRef]
  5. H. Zhang, C. Zou, L. Song, X. Zhang, F. Fang, D. Jia, and Y. Zhang, “Curved compound eye imaging system with a large field of view based on a plano-concave substrate,” Proc. SPIE 8418, 841805 (2012).
    [CrossRef]
  6. Y.-S. Cherng and G.-D. J. Su, “Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process,” J. Micromech. Microeng. 24, 015016 (2014).
    [CrossRef]
  7. H. Reibold, HTC One Kompakt (Brain-Media.de, 2013).
  8. D. Mendlovic, “Toward a super imaging system,” Appl. Opt. 52, 561–566 (2013).
    [CrossRef]
  9. N. F. Borrelli, “Efficiency of microlens array for projection LCD,” in Proceedings of the 44th Electronic Components and Technology Conference (IEEE, 1994), pp. 338–345.
  10. R. Kingslake, “Lenses for aerial photography,” J. Opt. Soc. Am. 32, 129–133 (1942).
    [CrossRef]
  11. J. Duparré, D. Radtke, A. Brückner, and A. Bräuer, “Latest developments in micro-optical artificial compound eyes: a promising approach for next generation ultra-compact machine vision,” Proc. SPIE 6503, 65030I (2007).
    [CrossRef]
  12. J. Chen, Y.-C. Tseng, K.-C. Chuang, J.-C. Chen, and S.-Y. Lin, “Rotating type miniature camera phone multi-focal-length optical system,” Opt. Rev. 16, 103–115 (2009).
    [CrossRef]
  13. J. Meyer, A. Brückner, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Optical cluster eye fabricated on wafer-level,” Opt. Express 19, 17506–17519 (2011).
    [CrossRef]
  14. C.-S. Chen, T.-H. Tsai, and M.-T. Chou, “Optical image system,” U.S. Patent2013/0235473 A1 (12September, 2013).

2014 (1)

Y.-S. Cherng and G.-D. J. Su, “Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process,” J. Micromech. Microeng. 24, 015016 (2014).
[CrossRef]

2013 (1)

2012 (1)

H. Zhang, C. Zou, L. Song, X. Zhang, F. Fang, D. Jia, and Y. Zhang, “Curved compound eye imaging system with a large field of view based on a plano-concave substrate,” Proc. SPIE 8418, 841805 (2012).
[CrossRef]

2011 (1)

2009 (1)

J. Chen, Y.-C. Tseng, K.-C. Chuang, J.-C. Chen, and S.-Y. Lin, “Rotating type miniature camera phone multi-focal-length optical system,” Opt. Rev. 16, 103–115 (2009).
[CrossRef]

2007 (1)

J. Duparré, D. Radtke, A. Brückner, and A. Bräuer, “Latest developments in micro-optical artificial compound eyes: a promising approach for next generation ultra-compact machine vision,” Proc. SPIE 6503, 65030I (2007).
[CrossRef]

2006 (1)

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes—topical review,” Bioinsp. Biomim. 1, R1–R16 (2006).

2005 (1)

1998 (1)

S. Banerjee and L. Hazra, “Thin lens design of Cooke triplet lenses: application of a global optimization technique,” Proc. SPIE 3430, 175–183 (1998).
[CrossRef]

1988 (1)

M. F. Land, “The optics of animal eyes,” Contemp. Phys. 29, 435–455 (1988).
[CrossRef]

1942 (1)

Banerjee, S.

S. Banerjee and L. Hazra, “Thin lens design of Cooke triplet lenses: application of a global optimization technique,” Proc. SPIE 3430, 175–183 (1998).
[CrossRef]

Borrelli, N. F.

N. F. Borrelli, “Efficiency of microlens array for projection LCD,” in Proceedings of the 44th Electronic Components and Technology Conference (IEEE, 1994), pp. 338–345.

Bräuer, A.

J. Meyer, A. Brückner, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Optical cluster eye fabricated on wafer-level,” Opt. Express 19, 17506–17519 (2011).
[CrossRef]

J. Duparré, D. Radtke, A. Brückner, and A. Bräuer, “Latest developments in micro-optical artificial compound eyes: a promising approach for next generation ultra-compact machine vision,” Proc. SPIE 6503, 65030I (2007).
[CrossRef]

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005).
[CrossRef]

Brückner, A.

J. Meyer, A. Brückner, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Optical cluster eye fabricated on wafer-level,” Opt. Express 19, 17506–17519 (2011).
[CrossRef]

J. Duparré, D. Radtke, A. Brückner, and A. Bräuer, “Latest developments in micro-optical artificial compound eyes: a promising approach for next generation ultra-compact machine vision,” Proc. SPIE 6503, 65030I (2007).
[CrossRef]

Chen, C.-S.

C.-S. Chen, T.-H. Tsai, and M.-T. Chou, “Optical image system,” U.S. Patent2013/0235473 A1 (12September, 2013).

Chen, J.

J. Chen, Y.-C. Tseng, K.-C. Chuang, J.-C. Chen, and S.-Y. Lin, “Rotating type miniature camera phone multi-focal-length optical system,” Opt. Rev. 16, 103–115 (2009).
[CrossRef]

Chen, J.-C.

J. Chen, Y.-C. Tseng, K.-C. Chuang, J.-C. Chen, and S.-Y. Lin, “Rotating type miniature camera phone multi-focal-length optical system,” Opt. Rev. 16, 103–115 (2009).
[CrossRef]

Cherng, Y.-S.

Y.-S. Cherng and G.-D. J. Su, “Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process,” J. Micromech. Microeng. 24, 015016 (2014).
[CrossRef]

Chou, M.-T.

C.-S. Chen, T.-H. Tsai, and M.-T. Chou, “Optical image system,” U.S. Patent2013/0235473 A1 (12September, 2013).

Chuang, K.-C.

J. Chen, Y.-C. Tseng, K.-C. Chuang, J.-C. Chen, and S.-Y. Lin, “Rotating type miniature camera phone multi-focal-length optical system,” Opt. Rev. 16, 103–115 (2009).
[CrossRef]

Dannberg, P.

Duparré, J.

J. Duparré, D. Radtke, A. Brückner, and A. Bräuer, “Latest developments in micro-optical artificial compound eyes: a promising approach for next generation ultra-compact machine vision,” Proc. SPIE 6503, 65030I (2007).
[CrossRef]

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005).
[CrossRef]

Duparré, J. W.

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes—topical review,” Bioinsp. Biomim. 1, R1–R16 (2006).

Fang, F.

H. Zhang, C. Zou, L. Song, X. Zhang, F. Fang, D. Jia, and Y. Zhang, “Curved compound eye imaging system with a large field of view based on a plano-concave substrate,” Proc. SPIE 8418, 841805 (2012).
[CrossRef]

Hazra, L.

S. Banerjee and L. Hazra, “Thin lens design of Cooke triplet lenses: application of a global optimization technique,” Proc. SPIE 3430, 175–183 (1998).
[CrossRef]

Jia, D.

H. Zhang, C. Zou, L. Song, X. Zhang, F. Fang, D. Jia, and Y. Zhang, “Curved compound eye imaging system with a large field of view based on a plano-concave substrate,” Proc. SPIE 8418, 841805 (2012).
[CrossRef]

Kingslake, R.

Land, M. F.

M. F. Land, “The optics of animal eyes,” Contemp. Phys. 29, 435–455 (1988).
[CrossRef]

Leitel, R.

Lin, S.-Y.

J. Chen, Y.-C. Tseng, K.-C. Chuang, J.-C. Chen, and S.-Y. Lin, “Rotating type miniature camera phone multi-focal-length optical system,” Opt. Rev. 16, 103–115 (2009).
[CrossRef]

Mendlovic, D.

Meyer, J.

Radtke, D.

J. Duparré, D. Radtke, A. Brückner, and A. Bräuer, “Latest developments in micro-optical artificial compound eyes: a promising approach for next generation ultra-compact machine vision,” Proc. SPIE 6503, 65030I (2007).
[CrossRef]

Reibold, H.

H. Reibold, HTC One Kompakt (Brain-Media.de, 2013).

Schreiber, P.

Song, L.

H. Zhang, C. Zou, L. Song, X. Zhang, F. Fang, D. Jia, and Y. Zhang, “Curved compound eye imaging system with a large field of view based on a plano-concave substrate,” Proc. SPIE 8418, 841805 (2012).
[CrossRef]

Su, G.-D. J.

Y.-S. Cherng and G.-D. J. Su, “Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process,” J. Micromech. Microeng. 24, 015016 (2014).
[CrossRef]

Tsai, T.-H.

C.-S. Chen, T.-H. Tsai, and M.-T. Chou, “Optical image system,” U.S. Patent2013/0235473 A1 (12September, 2013).

Tseng, Y.-C.

J. Chen, Y.-C. Tseng, K.-C. Chuang, J.-C. Chen, and S.-Y. Lin, “Rotating type miniature camera phone multi-focal-length optical system,” Opt. Rev. 16, 103–115 (2009).
[CrossRef]

Tünnermann, A.

Wippermann, F. C.

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes—topical review,” Bioinsp. Biomim. 1, R1–R16 (2006).

Zhang, H.

H. Zhang, C. Zou, L. Song, X. Zhang, F. Fang, D. Jia, and Y. Zhang, “Curved compound eye imaging system with a large field of view based on a plano-concave substrate,” Proc. SPIE 8418, 841805 (2012).
[CrossRef]

Zhang, X.

H. Zhang, C. Zou, L. Song, X. Zhang, F. Fang, D. Jia, and Y. Zhang, “Curved compound eye imaging system with a large field of view based on a plano-concave substrate,” Proc. SPIE 8418, 841805 (2012).
[CrossRef]

Zhang, Y.

H. Zhang, C. Zou, L. Song, X. Zhang, F. Fang, D. Jia, and Y. Zhang, “Curved compound eye imaging system with a large field of view based on a plano-concave substrate,” Proc. SPIE 8418, 841805 (2012).
[CrossRef]

Zou, C.

H. Zhang, C. Zou, L. Song, X. Zhang, F. Fang, D. Jia, and Y. Zhang, “Curved compound eye imaging system with a large field of view based on a plano-concave substrate,” Proc. SPIE 8418, 841805 (2012).
[CrossRef]

Appl. Opt. (2)

Bioinsp. Biomim. (1)

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes—topical review,” Bioinsp. Biomim. 1, R1–R16 (2006).

Contemp. Phys. (1)

M. F. Land, “The optics of animal eyes,” Contemp. Phys. 29, 435–455 (1988).
[CrossRef]

J. Micromech. Microeng. (1)

Y.-S. Cherng and G.-D. J. Su, “Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process,” J. Micromech. Microeng. 24, 015016 (2014).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Opt. Rev. (1)

J. Chen, Y.-C. Tseng, K.-C. Chuang, J.-C. Chen, and S.-Y. Lin, “Rotating type miniature camera phone multi-focal-length optical system,” Opt. Rev. 16, 103–115 (2009).
[CrossRef]

Proc. SPIE (3)

J. Duparré, D. Radtke, A. Brückner, and A. Bräuer, “Latest developments in micro-optical artificial compound eyes: a promising approach for next generation ultra-compact machine vision,” Proc. SPIE 6503, 65030I (2007).
[CrossRef]

S. Banerjee and L. Hazra, “Thin lens design of Cooke triplet lenses: application of a global optimization technique,” Proc. SPIE 3430, 175–183 (1998).
[CrossRef]

H. Zhang, C. Zou, L. Song, X. Zhang, F. Fang, D. Jia, and Y. Zhang, “Curved compound eye imaging system with a large field of view based on a plano-concave substrate,” Proc. SPIE 8418, 841805 (2012).
[CrossRef]

Other (3)

H. Reibold, HTC One Kompakt (Brain-Media.de, 2013).

N. F. Borrelli, “Efficiency of microlens array for projection LCD,” in Proceedings of the 44th Electronic Components and Technology Conference (IEEE, 1994), pp. 338–345.

C.-S. Chen, T.-H. Tsai, and M.-T. Chou, “Optical image system,” U.S. Patent2013/0235473 A1 (12September, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Schematic diagram of the multichannel imaging system prototype illustrating the structure of the optical module, which is directly attached to an image sensor (shown in green). Microlenses are indicated in blue; two pieces of meniscus lenses are in black; IR filter is in brown; and field apertures are in red.

Fig. 2.
Fig. 2.

Design flowchart of the multichannel imaging system.

Fig. 3.
Fig. 3.

(a) Diffraction MTF performance of the Hypergon lens. (b) Root mean square (RMS) spot diagrams of the Hypergon lens.

Fig. 4.
Fig. 4.

Structural design of the hexagonal MLA.

Fig. 5.
Fig. 5.

(a) Single hexagonal lens. (b) Hexagonal microlenses assembled into the whole MLA.

Fig. 6.
Fig. 6.

Modeling of configuration 2.

Fig. 7.
Fig. 7.

Modeling of configuration 8.

Fig. 8.
Fig. 8.

Modeling of configuration 20.

Fig. 9.
Fig. 9.

Angle between two adjacent microlenses of (a) 1°, (b) 2°, (c) 3°, and (d) 4°.

Fig. 10.
Fig. 10.

(a) Diameter=0.3mm as the field aperture size of the center, the first ring, and the second ring (from inner to outer). (b) Diameter=0.33mm as the field aperture size of the third ring to the sixth ring. (c) Microlens and field aperture arrangements. (d) Each incident angle of the light through the center of a microlens and field aperture focuses on the image sensor.

Fig. 11.
Fig. 11.

(a) Without field apertures, overlapped images will form as marked with red circles. (b) With field apertures, different angles of incident light through different microlenses on the image sensor at the same position do not produce overlapped images.

Fig. 12.
Fig. 12.

Outer regions have more blank space between images with field apertures.

Fig. 13.
Fig. 13.

Image stitching offset measurement.

Fig. 14.
Fig. 14.

System after optimizing, 2.7 mm in length and 2.268 mm in half-height; the substrate of the microlens is convex-concave glass, and the FOV covers 100°.

Fig. 15.
Fig. 15.

(a) Diffraction MTF performance of the multichannel system. (b) RMS spot diagrams of the multichannel system.

Fig. 16.
Fig. 16.

Stitching every partial image to recombine the full image and adjust brightness. (a) Image of “Lenna”. (b) Image of “1951 USAF chart”.

Tables (4)

Tables Icon

Table 1. List of Structure Parameters

Tables Icon

Table 2. Radius and Thickness of Multichannel Imaging System

Tables Icon

Table 3. Specifications of Multichannel Imaging System

Tables Icon

Table 4. Comparison of Different Parameters of Multichannel Systema

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Zdistance=R112dsinθ,
R2=(Zdistance)2+[(12d)2(12dsinθ)2+12d]2.
Zdistance=R1dsinθ12dsin2θ,
R8=(Zdistance)2+[d2(dsinθ)2+(12d)2(12dsin2θ)2+12d]2.
Zdistance=R1dsinθdsin2θ12dsin3θ,
R20=(Zdistance)2+[d2(dsinθ)2+d2(dsin2θ)2+(12d)2(12dsin3θ)2+12d]2.

Metrics