Abstract

We report on shift-multiplexed holographic storage of 250 digital data pages in a photopolymerizable SiO2 nanoparticle–polymer composite film being capable of step-growth thiol-ene polymerization in the green. Various two-dimensional symbol modulation codes for the digital data page format were employed to examine the dependence of the readout fidelity on modulation coding schemes. It is found that, as compared to 12 and 24 modulation codes, higher-order 59, 916, and 1325 modulation codes possessing reduced white rates and higher coding efficiencies give lower symbol-error rates of 1×103 and higher signal-to-noise ratios (>4).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Lessard and G. Manivannan, “Holographic recording materials: an overview,” Proc. SPIE 2405, 2–23 (1995).
    [CrossRef]
  2. L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 199.
  3. M. Haw, “The light fantastic,” Nature 422, 556–558 (2003).
    [CrossRef]
  4. G. P. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14 (4), 54–59 (2003).
    [CrossRef]
  5. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
    [CrossRef]
  6. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43, 2125–2129 (2004).
    [CrossRef]
  7. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
    [CrossRef]
  8. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
    [CrossRef]
  9. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
  10. O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
    [CrossRef]
  11. K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
    [CrossRef]
  12. T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A 11, 024010 (2009).
    [CrossRef]
  13. K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107 (2010).
    [CrossRef]
  14. M. Moothanchery, I. Naydenova, S. Mintova, and V. Toal, “Nanozeolites doped photopolymer layers with reduced shrinkage,” Opt. Express 19, 25786–25791 (2011).
    [CrossRef]
  15. Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett. 33, 1750–1752 (2008).
    [CrossRef]
  16. E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35, 396–398 (2010).
    [CrossRef]
  17. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express 1, 207–222 (2011).
    [CrossRef]
  18. E. Hata and Y. Tomita, “Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based on step-growth polymerization,” Opt. Mater. Express 1, 1113–1120 (2011).
    [CrossRef]
  19. G. Odian, Principles of Polymerization, 4th ed. (Wiley, 1994), Chap. 2, p. 110.
  20. C. E. Hoyle, T. Y. Lee, and T. Roper, “Thol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. A 42, 5301–5338 (2004).
    [CrossRef]
  21. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
    [CrossRef]
  22. K. Momose, S. Takayama, E. Hata, and Y. Tomita, “Shift-multiplexed holographic digital data page storage in a nanoparticle-(thiol-ene) polymer composite film,” Opt. Lett. 37, 2250–2252 (2012).
    [CrossRef]
  23. S. Yasuda, Y. Osasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” Appl. Opt. 48, 6851–6861 (2009).
    [CrossRef]
  24. H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).
  25. N. B. Cramer and C. N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. A 39, 3311–3319 (2001).
    [CrossRef]
  26. N. B. Cramer, T. Davies, A. K. O’Brien, and C. N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
    [CrossRef]
  27. L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
    [CrossRef]
  28. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with sperical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
    [CrossRef]
  29. E. Femández, M. Ortuño, S. Gallego, A. Márquez, C. Garcia, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a polyvinyl alcohol/acrylamide photopolymer memory,” Appl. Opt. 47, 4448–4456 (2008).
    [CrossRef]
  30. T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys. 40, 1732–1736 (2001).
    [CrossRef]
  31. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
    [CrossRef]
  32. M. A. Ellabban, T. Woike, M. Fally, and R. A. Rupp, “Holographic scattering in the ultraviolet spectral range in iron-doped lithium niobate,” Europhys. Lett. 70, 471–477 (2005).
    [CrossRef]
  33. J. A. Frantz, R. K. Kostuk, and D. A. Waldman, “Model of noise-grating selectivity in volume holographic recording materials by use of Monte Carlo simulations,” J. Opt. Soc. Am. A 21, 378–387 (2004).
    [CrossRef]
  34. N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46, 6809–6814 (2007).
    [CrossRef]
  35. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, and G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997).
    [CrossRef]
  36. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007).
    [CrossRef]

2012 (1)

2011 (3)

2010 (2)

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107 (2010).
[CrossRef]

E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35, 396–398 (2010).
[CrossRef]

2009 (2)

S. Yasuda, Y. Osasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” Appl. Opt. 48, 6851–6861 (2009).
[CrossRef]

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A 11, 024010 (2009).
[CrossRef]

2008 (3)

2007 (3)

2006 (4)

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

2005 (2)

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).

M. A. Ellabban, T. Woike, M. Fally, and R. A. Rupp, “Holographic scattering in the ultraviolet spectral range in iron-doped lithium niobate,” Europhys. Lett. 70, 471–477 (2005).
[CrossRef]

2004 (3)

2003 (4)

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[CrossRef]

M. Haw, “The light fantastic,” Nature 422, 556–558 (2003).
[CrossRef]

G. P. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14 (4), 54–59 (2003).
[CrossRef]

N. B. Cramer, T. Davies, A. K. O’Brien, and C. N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

2002 (1)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

2001 (2)

N. B. Cramer and C. N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. A 39, 3311–3319 (2001).
[CrossRef]

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys. 40, 1732–1736 (2001).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1995 (1)

R. A. Lessard and G. Manivannan, “Holographic recording materials: an overview,” Proc. SPIE 2405, 2–23 (1995).
[CrossRef]

Barbastathis, G.

Beléndez, A.

Bernal, M.-P.

Bowman, C. N.

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).

N. B. Cramer, T. Davies, A. K. O’Brien, and C. N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

N. B. Cramer and C. N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. A 39, 3311–3319 (2001).
[CrossRef]

Boyd, C.

Brandelik, D. M.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[CrossRef]

Brown, D. P.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Bunning, T. J.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[CrossRef]

Burr, G. W.

Campbell, S.

Carioscia, J. A.

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).

Chandra, S.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[CrossRef]

Chikama, K.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
[CrossRef]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
[CrossRef]

Coufal, H.

Cramer, N. B.

N. B. Cramer, T. Davies, A. K. O’Brien, and C. N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

N. B. Cramer and C. N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. A 39, 3311–3319 (2001).
[CrossRef]

Crawford, G. P.

G. P. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14 (4), 54–59 (2003).
[CrossRef]

Curtis, K.

Davies, T.

N. B. Cramer, T. Davies, A. K. O’Brien, and C. N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

Dhar, L.

L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
[CrossRef]

L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 199.

Ellabban, M. A.

M. A. Ellabban, T. Woike, M. Fally, and R. A. Rupp, “Holographic scattering in the ultraviolet spectral range in iron-doped lithium niobate,” Europhys. Lett. 70, 471–477 (2005).
[CrossRef]

Fally, M.

M. A. Ellabban, T. Woike, M. Fally, and R. A. Rupp, “Holographic scattering in the ultraviolet spectral range in iron-doped lithium niobate,” Europhys. Lett. 70, 471–477 (2005).
[CrossRef]

Femández, E.

Frantz, J. A.

Fukumoto, A.

Furushima, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[CrossRef]

Gallego, S.

Garcia, C.

Goldenberg, L. M.

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
[CrossRef]

Grygier, R. K.

Günther, H.

Hale, A.

L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 199.

Hara, M.

Harris, A.

Harris, A. L.

L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 199.

Hata, E.

Haw, M.

M. Haw, “The light fantastic,” Nature 422, 556–558 (2003).
[CrossRef]

Hayashi, K.

Hidaka, M.

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
[CrossRef]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[CrossRef]

Hidaka, T.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A 11, 024010 (2009).
[CrossRef]

Hill, A.

Hirooka, K.

Hoffnagle, J. A.

Hoyle, C. E.

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. A 42, 5301–5338 (2004).
[CrossRef]

Imai, T.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys. 40, 1732–1736 (2001).
[CrossRef]

Ishioka, K.

Ishizu, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[CrossRef]

Jefferson, C. M.

Katz, H. E.

L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 199.

Kawano, K.

Kojima, T.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

Kostuk, R. K.

Kume, T.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys. 40, 1732–1736 (2001).
[CrossRef]

Lee, T. Y.

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. A 42, 5301–5338 (2004).
[CrossRef]

Lessard, R. A.

R. A. Lessard and G. Manivannan, “Holographic recording materials: an overview,” Proc. SPIE 2405, 2–23 (1995).
[CrossRef]

Levene, M.

Levinos, N.

Lloyd, P. F.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Lu, H.

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).

Macfarlane, R. M.

Manivannan, G.

R. A. Lessard and G. Manivannan, “Holographic recording materials: an overview,” Proc. SPIE 2405, 2–23 (1995).
[CrossRef]

Márquez, A.

Martin, S.

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Mastubara, K.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
[CrossRef]

Minabe, J.

Mintova, S.

M. Moothanchery, I. Naydenova, S. Mintova, and V. Toal, “Nanozeolites doped photopolymer layers with reduced shrinkage,” Opt. Express 19, 25786–25791 (2011).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Mitsube, K.

Momose, K.

Moothanchery, M.

Nakamura, T.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A 11, 024010 (2009).
[CrossRef]

Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett. 33, 1750–1752 (2008).
[CrossRef]

Natarajan, L. V.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[CrossRef]

Naydenova, I.

M. Moothanchery, I. Naydenova, S. Mintova, and V. Toal, “Nanozeolites doped photopolymer layers with reduced shrinkage,” Opt. Express 19, 25786–25791 (2011).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Nozaki, J.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A 11, 024010 (2009).
[CrossRef]

O’Brien, A. K.

N. B. Cramer, T. Davies, A. K. O’Brien, and C. N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

Ochi, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[CrossRef]

Odian, G.

G. Odian, Principles of Polymerization, 4th ed. (Wiley, 1994), Chap. 2, p. 110.

Ohmori, K.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A 11, 024010 (2009).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
[CrossRef]

Omura, K.

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107 (2010).
[CrossRef]

Ortuño, M.

Osasawara, Y.

Oyama, S.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
[CrossRef]

Ozawa, M.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[CrossRef]

Pascual, I.

Psaltis, D.

Roper, T.

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. A 42, 5301–5338 (2004).
[CrossRef]

Rupp, R. A.

M. A. Ellabban, T. Woike, M. Fally, and R. A. Rupp, “Holographic scattering in the ultraviolet spectral range in iron-doped lithium niobate,” Europhys. Lett. 70, 471–477 (2005).
[CrossRef]

Sakhno, O. V.

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
[CrossRef]

Schilling, M.

Schilling, M. L.

L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 199.

Schnoes, M. G.

L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 199.

Shelby, R. M.

Shepherd, C. K.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[CrossRef]

Sherif, H.

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Sincerbox, G. T.

Smironova, T. N.

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
[CrossRef]

Stansbury, J. W.

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).

Stumpe, J.

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
[CrossRef]

Sutherland, R. L.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[CrossRef]

Suzuki, N.

Tackitt, M.

Tago, A.

Takayama, S.

Tanaka, A.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[CrossRef]

Tanaka, K.

Toal, V.

M. Moothanchery, I. Naydenova, S. Mintova, and V. Toal, “Nanozeolites doped photopolymer layers with reduced shrinkage,” Opt. Express 19, 25786–25791 (2011).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Tokuyama, K.

Tomita, Y.

K. Momose, S. Takayama, E. Hata, and Y. Tomita, “Shift-multiplexed holographic digital data page storage in a nanoparticle-(thiol-ene) polymer composite film,” Opt. Lett. 37, 2250–2252 (2012).
[CrossRef]

E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express 1, 207–222 (2011).
[CrossRef]

E. Hata and Y. Tomita, “Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based on step-growth polymerization,” Opt. Mater. Express 1, 1113–1120 (2011).
[CrossRef]

E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35, 396–398 (2010).
[CrossRef]

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107 (2010).
[CrossRef]

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A 11, 024010 (2009).
[CrossRef]

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
[CrossRef]

Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett. 33, 1750–1752 (2008).
[CrossRef]

N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46, 6809–6814 (2007).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006).
[CrossRef]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[CrossRef]

N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43, 2125–2129 (2004).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

Tomlin, D.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[CrossRef]

Tondiglia, V. P.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[CrossRef]

Waldman, D. A.

Watanabe, K.

Wilson, W.

Wofford, J. M.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Woike, T.

M. A. Ellabban, T. Woike, M. Fally, and R. A. Rupp, “Holographic scattering in the ultraviolet spectral range in iron-doped lithium niobate,” Europhys. Lett. 70, 471–477 (2005).
[CrossRef]

Yagi, S.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys. 40, 1732–1736 (2001).
[CrossRef]

Yamamoto, M.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys. 40, 1732–1736 (2001).
[CrossRef]

Yasuda, S.

Appl. Opt. (5)

Appl. Phys. Lett. (2)

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[CrossRef]

Chem. Mater. (1)

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[CrossRef]

Dent. Mater. (1)

H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).

Europhys. Lett. (1)

M. A. Ellabban, T. Woike, M. Fally, and R. A. Rupp, “Holographic scattering in the ultraviolet spectral range in iron-doped lithium niobate,” Europhys. Lett. 70, 471–477 (2005).
[CrossRef]

J. Appl. Phys. (2)

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008).
[CrossRef]

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107 (2010).
[CrossRef]

J. Opt. A (1)

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A 11, 024010 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Polym. Sci. A (2)

C. E. Hoyle, T. Y. Lee, and T. Roper, “Thol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. A 42, 5301–5338 (2004).
[CrossRef]

N. B. Cramer and C. N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. A 39, 3311–3319 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys. 40, 1732–1736 (2001).
[CrossRef]

Macromolecules (1)

N. B. Cramer, T. Davies, A. K. O’Brien, and C. N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003).
[CrossRef]

Nanotechnology (1)

O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
[CrossRef]

Nature (1)

M. Haw, “The light fantastic,” Nature 422, 556–558 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. Express (2)

Opt. Photonics News (1)

G. P. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14 (4), 54–59 (2003).
[CrossRef]

Polymer (1)

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006).
[CrossRef]

Proc. SPIE (2)

R. A. Lessard and G. Manivannan, “Holographic recording materials: an overview,” Proc. SPIE 2405, 2–23 (1995).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).

Other (2)

L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 199.

G. Odian, Principles of Polymerization, 4th ed. (Wiley, 1994), Chap. 2, p. 110.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Chemical structures of thiol-ene monomers used in the present study. (a) Dithiol. (b) Triene.

Fig. 2.
Fig. 2.

Two-beam recording setup for shift-multiplexed HDS. SLM, two-dimensional spatial light modulator; Pol., polarizer. The focal lengths of lenses 1–6 are 50, 50, 50, 100, 100, and 100 mm, respectively.

Fig. 3.
Fig. 3.

Symbol modulation code patterns. (a) 12 modulation code, (b) 24 modulation code, (c) 59 modulation code, (d) 916 modulation code, (e) 1016 modulation code, (f) 1325 modulation code, and (g) 1525 modulation code.

Fig. 4.
Fig. 4.

Input digital data pages with (a) 12 modulation code, (b) 24 modulation code, (c) 59 modulation code, (d) 916 modulation code, (e) 1016 modulation code, (f) 1325 modulation code, and (g) 1525 modulation code. (h) Magnified portion of the data page (d).

Fig. 5.
Fig. 5.

Reconstructed digital data page images of the 21st data page holograms in recording order for input digital data pages with (a) 12 modulation code, (b) 24 modulation code, (c) 59 modulation code, (d) 916 modulation code, (e) 1016 modulation code, (f) 1325 modulation code, and (g) 1525 modulation code. (h) Magnified portion of the data page image (d).

Fig. 6.
Fig. 6.

Diffraction efficiencies as a function of data page number. (a) 12 modulation code, (b) 24 modulation code, (c) 59 modulation code, (d) 916 modulation code, (e) 1016 modulation code, (f) 1325 modulation code, and (g) 1525 modulation code.

Fig. 7.
Fig. 7.

SERs of reconstructed holograms as a function of data page number for various symbol modulation coding formats.

Fig. 8.
Fig. 8.

SNRs of reconstructed holograms as a function of data page number for different symbol modulation coding formats.

Fig. 9.
Fig. 9.

Parametric plots of SNR versus SER for reconstructed 250 holograms of various symbol modulation coding formats.

Tables (1)

Tables Icon

Table 1. Coding Efficiencies, White Rates, and Total Numbers of Symbols and Data Bits in a Coded Data Page Pattern for Various Symbol Modulation Codes

Metrics