Abstract

Theoretical and experimental approaches to diagnosing internal spin and orbital optical flows and the corresponding optical forces caused by these flows are offered. These approaches are based on the investigation of the motion of the particles tested in the formed optical field. The dependence of the above-mentioned forces upon the size and optical properties of the particles is demonstrated. The possibility of using kinematic values defining the motion dynamics of particles of the Rayleigh light scattering mechanism to make a quantitative assessment of the degree of coherence of mutually orthogonal waves that are linearly polarized in the incidence plane is demonstrated. The feasibility of using the above mentioned approach, its shortcomings, and its advantages over the interfering method for estimating the degree of coherence are analyzed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 2005).
  2. O. V. Angelsky, P. V. Polyanskii, and C. V. Felde, “The emerging field of correlation optics,” Opt. Photon. News 23(4), 25–29 (2012).
    [CrossRef]
  3. A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
    [CrossRef]
  4. A. Y. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31, 2199–2201 (2006).
    [CrossRef]
  5. A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007).
    [CrossRef]
  6. A. Bekshaev and M. Vasnetsov, “Vortex flow of light: ‘spin’ and ‘orbital’ flows in a circularly polarized paraxial beam,” in Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley-VCH, 2011), pp. 13–24.
  7. A. Y. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A 11, 094003 (2009).
    [CrossRef]
  8. A. Y. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407 (2006).
  9. H. F. Schouten, T. D. Visse, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
    [CrossRef]
  10. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15, 11781–11789 (2007).
    [CrossRef]
  11. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33, 848–850 (2008).
    [CrossRef]
  12. O. V. Angelsky, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On the feasibility for estimating the degree of coherence of waves at near field,” Appl. Opt. 48, 2784–2788 (2009).
    [CrossRef]
  13. O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009).
    [CrossRef]
  14. A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Y. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
  15. A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Yu. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
    [CrossRef]
  16. O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
    [CrossRef]
  17. O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20, 3563–3571 (2012).
    [CrossRef]
  18. A. Y. Bekshaev, “A simple analytical model of the angular momentum transformation in strongly focused light beams,” Central Eur. J. Phys. 8, 947–960 (2010).
    [CrossRef]
  19. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10, 115005 (2008).
    [CrossRef]
  20. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006).
  21. C. Y. Zenkova, I. V. Soltys, and P. O. Angelsky, “The use of motion peculiarities of particles of the Rayleigh light scattering mechanism for defining the coherence properties of optical fields,” Opt. Appl. 2, 297–312 (2013).
  22. O. V. Angelsky, C. Y. Zenkova, M. P. Gorsky, I. V. Soltys, and P. O. Angelsky, “The use of new approaches to estimating the coherence properties of mutually orthogonal beams,” Open Opt. J. 7, 5–12 (2013).
  23. T. Tudor, “Polarization waves as observable phenomena,” J. Opt. Soc. Am. A 14, 2013–2020 (1997).
    [CrossRef]
  24. O. V. Angelsky, S. B. Yermolenko, C. Y. Zenkova, and A. O. Agelskaya, “Polarization manifestations of correlation (intrinsic coherence) of optical fields,” Appl. Opt. 47, 5492–5499 (2008).
  25. O. V. Angelsky, N. N. Dominikov, P. P. Maksimyak, and T. Tudor, “Experimental revealing of polarization waves,” Appl. Opt. 38, 3112–3117 (1999).
    [CrossRef]
  26. A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E 72, 025602 (2005).
    [CrossRef]
  27. O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
    [CrossRef]
  28. O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
    [CrossRef]
  29. O. V. Angelsky, S. G. Hanson, A. P. Maksimyak, and P. P. Maksimyak, “On the feasibility for determining the amplitude zeroes in polychromatic fields,” Opt. Express 13, 4396–4405 (2005).
    [CrossRef]
  30. T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
    [CrossRef]
  31. S. Savithiri, A. Pattamatta, and S. K. Das, “Scaling analysis for the investigation of slip mechanisms in nanofluids,” Nanoscale Res. Lett. 6, 471 (2011).

2013

C. Y. Zenkova, I. V. Soltys, and P. O. Angelsky, “The use of motion peculiarities of particles of the Rayleigh light scattering mechanism for defining the coherence properties of optical fields,” Opt. Appl. 2, 297–312 (2013).

O. V. Angelsky, C. Y. Zenkova, M. P. Gorsky, I. V. Soltys, and P. O. Angelsky, “The use of new approaches to estimating the coherence properties of mutually orthogonal beams,” Open Opt. J. 7, 5–12 (2013).

2012

2011

S. Savithiri, A. Pattamatta, and S. K. Das, “Scaling analysis for the investigation of slip mechanisms in nanofluids,” Nanoscale Res. Lett. 6, 471 (2011).

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
[CrossRef]

A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Y. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).

2010

A. Y. Bekshaev, “A simple analytical model of the angular momentum transformation in strongly focused light beams,” Central Eur. J. Phys. 8, 947–960 (2010).
[CrossRef]

2009

2008

2007

2006

A. Y. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31, 2199–2201 (2006).
[CrossRef]

A. Y. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407 (2006).

2005

A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E 72, 025602 (2005).
[CrossRef]

O. V. Angelsky, S. G. Hanson, A. P. Maksimyak, and P. P. Maksimyak, “On the feasibility for determining the amplitude zeroes in polychromatic fields,” Opt. Express 13, 4396–4405 (2005).
[CrossRef]

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

2004

H. F. Schouten, T. D. Visse, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
[CrossRef]

2002

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

1999

O. V. Angelsky, N. N. Dominikov, P. P. Maksimyak, and T. Tudor, “Experimental revealing of polarization waves,” Appl. Opt. 38, 3112–3117 (1999).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

1997

Adam, A. J. L.

Agelskaya, A. O.

Angel’skii, O. V.

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Angelsky, O. V.

O. V. Angelsky, C. Y. Zenkova, M. P. Gorsky, I. V. Soltys, and P. O. Angelsky, “The use of new approaches to estimating the coherence properties of mutually orthogonal beams,” Open Opt. J. 7, 5–12 (2013).

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Yu. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[CrossRef]

O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20, 3563–3571 (2012).
[CrossRef]

O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
[CrossRef]

O. V. Angelsky, P. V. Polyanskii, and C. V. Felde, “The emerging field of correlation optics,” Opt. Photon. News 23(4), 25–29 (2012).
[CrossRef]

A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Y. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).

O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009).
[CrossRef]

O. V. Angelsky, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On the feasibility for estimating the degree of coherence of waves at near field,” Appl. Opt. 48, 2784–2788 (2009).
[CrossRef]

O. V. Angelsky, S. B. Yermolenko, C. Y. Zenkova, and A. O. Agelskaya, “Polarization manifestations of correlation (intrinsic coherence) of optical fields,” Appl. Opt. 47, 5492–5499 (2008).

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

O. V. Angelsky, S. G. Hanson, A. P. Maksimyak, and P. P. Maksimyak, “On the feasibility for determining the amplitude zeroes in polychromatic fields,” Opt. Express 13, 4396–4405 (2005).
[CrossRef]

O. V. Angelsky, N. N. Dominikov, P. P. Maksimyak, and T. Tudor, “Experimental revealing of polarization waves,” Appl. Opt. 38, 3112–3117 (1999).
[CrossRef]

Angelsky, P. O.

C. Y. Zenkova, I. V. Soltys, and P. O. Angelsky, “The use of motion peculiarities of particles of the Rayleigh light scattering mechanism for defining the coherence properties of optical fields,” Opt. Appl. 2, 297–312 (2013).

O. V. Angelsky, C. Y. Zenkova, M. P. Gorsky, I. V. Soltys, and P. O. Angelsky, “The use of new approaches to estimating the coherence properties of mutually orthogonal beams,” Open Opt. J. 7, 5–12 (2013).

Apostol, A.

A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E 72, 025602 (2005).
[CrossRef]

Archelyuk, A. D.

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Ashkin, A.

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006).

Bekshaev, A.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
[CrossRef]

A. Bekshaev and M. Vasnetsov, “Vortex flow of light: ‘spin’ and ‘orbital’ flows in a circularly polarized paraxial beam,” in Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley-VCH, 2011), pp. 13–24.

Bekshaev, A. Y.

O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
[CrossRef]

O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20, 3563–3571 (2012).
[CrossRef]

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Yu. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[CrossRef]

A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Y. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).

A. Y. Bekshaev, “A simple analytical model of the angular momentum transformation in strongly focused light beams,” Central Eur. J. Phys. 8, 947–960 (2010).
[CrossRef]

A. Y. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A 11, 094003 (2009).
[CrossRef]

A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007).
[CrossRef]

A. Y. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407 (2006).

A. Y. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31, 2199–2201 (2006).
[CrossRef]

Bliokh, K.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 2005).

Burkovets, D. N.

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Das, S. K.

S. Savithiri, A. Pattamatta, and S. K. Das, “Scaling analysis for the investigation of slip mechanisms in nanofluids,” Nanoscale Res. Lett. 6, 471 (2011).

Dogariu, A.

A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E 72, 025602 (2005).
[CrossRef]

Dominikov, N. N.

Dorfmüller, J.

Ermolenko, S. B.

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Etrich, C.

Felde, C. V.

O. V. Angelsky, P. V. Polyanskii, and C. V. Felde, “The emerging field of correlation optics,” Opt. Photon. News 23(4), 25–29 (2012).
[CrossRef]

Friberg, A. T.

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Giessen, H.

Gorodyns’ka, N. V.

Gorsky, M. P.

Hanson, S. G.

Heckenberg, N. R.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10, 115005 (2008).
[CrossRef]

Jeoung, S. C.

Kaivola, M.

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Kang, J. H.

Kern, K.

Kim, D. S.

Lederer, F.

Lee, J. W.

Lenstra, D.

H. F. Schouten, T. D. Visse, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
[CrossRef]

Maksimyak, A. P.

Maksimyak, P. P.

Mokhun, I. I.

Nieminen, T. A.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10, 115005 (2008).
[CrossRef]

Park, Q. H.

Pattamatta, A.

S. Savithiri, A. Pattamatta, and S. K. Das, “Scaling analysis for the investigation of slip mechanisms in nanofluids,” Nanoscale Res. Lett. 6, 471 (2011).

Pertsch, T.

Planken, P. C. M.

Polyanskii, P. V.

O. V. Angelsky, P. V. Polyanskii, and C. V. Felde, “The emerging field of correlation optics,” Opt. Photon. News 23(4), 25–29 (2012).
[CrossRef]

Rockstuhl, C.

Rubinsztein-Dunlop, H.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10, 115005 (2008).
[CrossRef]

Savithiri, S.

S. Savithiri, A. Pattamatta, and S. K. Das, “Scaling analysis for the investigation of slip mechanisms in nanofluids,” Nanoscale Res. Lett. 6, 471 (2011).

Schouten, H. F.

H. F. Schouten, T. D. Visse, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
[CrossRef]

Seo, M. A.

Setala, T.

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Shevchenko, A.

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Soltys, I. V.

O. V. Angelsky, C. Y. Zenkova, M. P. Gorsky, I. V. Soltys, and P. O. Angelsky, “The use of new approaches to estimating the coherence properties of mutually orthogonal beams,” Open Opt. J. 7, 5–12 (2013).

C. Y. Zenkova, I. V. Soltys, and P. O. Angelsky, “The use of motion peculiarities of particles of the Rayleigh light scattering mechanism for defining the coherence properties of optical fields,” Opt. Appl. 2, 297–312 (2013).

Soskin, M.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
[CrossRef]

Soskin, M. S.

A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007).
[CrossRef]

A. Y. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31, 2199–2201 (2006).
[CrossRef]

Stilgoe, A. B.

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10, 115005 (2008).
[CrossRef]

Sviridova, S. V.

A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Y. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).

Tomka, Y. Y.

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Tudor, T.

Tyurin, A. V.

Ushenko, A. G.

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Ushenko, Y. A.

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Ushenko, Y. G.

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Vasnetsov, M.

A. Bekshaev and M. Vasnetsov, “Vortex flow of light: ‘spin’ and ‘orbital’ flows in a circularly polarized paraxial beam,” in Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley-VCH, 2011), pp. 13–24.

Visse, T. D.

H. F. Schouten, T. D. Visse, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
[CrossRef]

Vogelgesang, R.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 2005).

Yermolenko, S. B.

Zenkova, C. Y.

O. V. Angelsky, C. Y. Zenkova, M. P. Gorsky, I. V. Soltys, and P. O. Angelsky, “The use of new approaches to estimating the coherence properties of mutually orthogonal beams,” Open Opt. J. 7, 5–12 (2013).

C. Y. Zenkova, I. V. Soltys, and P. O. Angelsky, “The use of motion peculiarities of particles of the Rayleigh light scattering mechanism for defining the coherence properties of optical fields,” Opt. Appl. 2, 297–312 (2013).

O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20, 3563–3571 (2012).
[CrossRef]

O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012).
[CrossRef]

A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Y. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).

O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009).
[CrossRef]

O. V. Angelsky, S. B. Yermolenko, C. Y. Zenkova, and A. O. Agelskaya, “Polarization manifestations of correlation (intrinsic coherence) of optical fields,” Appl. Opt. 47, 5492–5499 (2008).

Zenkova, C. Yu.

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Yu. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[CrossRef]

O. V. Angelsky, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On the feasibility for estimating the degree of coherence of waves at near field,” Appl. Opt. 48, 2784–2788 (2009).
[CrossRef]

Zentgraf, T.

Adv. Opt. Technol.

A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Y. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).

Appl. Opt.

Central Eur. J. Phys.

A. Y. Bekshaev, “A simple analytical model of the angular momentum transformation in strongly focused light beams,” Central Eur. J. Phys. 8, 947–960 (2010).
[CrossRef]

J. Opt.

A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011).
[CrossRef]

J. Opt. A

A. Y. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A 11, 094003 (2009).
[CrossRef]

T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10, 115005 (2008).
[CrossRef]

J. Opt. B

H. F. Schouten, T. D. Visse, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005).
[CrossRef]

Nanoscale Res. Lett.

S. Savithiri, A. Pattamatta, and S. K. Das, “Scaling analysis for the investigation of slip mechanisms in nanofluids,” Nanoscale Res. Lett. 6, 471 (2011).

Open Opt. J.

O. V. Angelsky, C. Y. Zenkova, M. P. Gorsky, I. V. Soltys, and P. O. Angelsky, “The use of new approaches to estimating the coherence properties of mutually orthogonal beams,” Open Opt. J. 7, 5–12 (2013).

Opt. Appl.

C. Y. Zenkova, I. V. Soltys, and P. O. Angelsky, “The use of motion peculiarities of particles of the Rayleigh light scattering mechanism for defining the coherence properties of optical fields,” Opt. Appl. 2, 297–312 (2013).

Opt. Commun.

A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photon. News

O. V. Angelsky, P. V. Polyanskii, and C. V. Felde, “The emerging field of correlation optics,” Opt. Photon. News 23(4), 25–29 (2012).
[CrossRef]

Phys. Rev. A

A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Yu. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012).
[CrossRef]

Phys. Rev. E

A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E 72, 025602 (2005).
[CrossRef]

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Proc. SPIE

A. Y. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407 (2006).

Quantum Electron.

O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999).
[CrossRef]

Other

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006).

A. Bekshaev and M. Vasnetsov, “Vortex flow of light: ‘spin’ and ‘orbital’ flows in a circularly polarized paraxial beam,” in Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley-VCH, 2011), pp. 13–24.

M. Born and E. Wolf, Principles of Optics (Pergamon, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Dependence of the force components on the particle size parameters in the inhomogeneous incident field with circular polarization. The particle refraction index is (a) m=0.32+2.65i and (b) m=1.5.

Fig. 2.
Fig. 2.

Dependence of the normalized transverse momentum flow components of the scattered field on the particle size parameter.

Fig. 3.
Fig. 3.

Comparison of mechanical actions associated with spin and orbital internal energy flows for metallic and dielectric spherical particles suspended in water. Solid lines describe the behavior of metallic particles; dashed lines describe the behavior of dielectric particles.

Fig. 4.
Fig. 4.

Schematic of the experimental setup. 1, 2, input beams (b=0.7mm) of semiconductor lasers (λ=0.67μm); 3, objective lens (f=10mm); 4, cell with tested particles suspended in water. a=1.3mm, θ=7.4°, NA=0.16.

Fig. 5.
Fig. 5.

Motion of a particle trapped within the central lobe of the interference pattern.

Fig. 6.
Fig. 6.

Superposition of plane waves of equal amplitude linearly polarized in the incidence plane, with the interference angle 90°. Periodic spatial polarization modulation takes place in the incidence plane.

Fig. 7.
Fig. 7.

Optical arrangement for the holographic experiment. Bs1 and Bs2, beam splitters; M1, M2, and M3, mirrors; P1, P2, and P3, polarizers; PR, prism; IL, immersion liquid; H, hologram.

Fig. 8.
Fig. 8.

Dependence of visibility V of the interference patterns resulting from three-beam superposition on phase of the reference wave φ. In curve 1, for the case of complete coherent waves, η(1,2)=1, the VMD corresponds to M=1; in curve 2, η(1,2)=0, and the VMD corresponds to M=0; in curve 3, η(1,2)=0.25, and the VMD corresponds to M=0.25; in curve 4: η(1,2)=0.5, and the VMD corresponds to M=0.5; in curve 5, η(1,2)=0.75, and the VMD corresponds to M=0.75.

Fig. 9.
Fig. 9.

Change in the normalized value of the averaged motion velocity of Rayleigh particles (particles of about λ/100) with time and with the change in the degree of coherence of interacting waves (η(1,2)). The legend shows different degrees of coherence that correspond to different curves.

Fig. 10.
Fig. 10.

Change in the normalized value of the averaged motion velocity of Rayleigh particles (particles of about λ/100) with time and with the change in the degree of coherence of interacting waves (η(1,2)) when the Brownian motion of particles is taken into consideration. The legend shows the degrees of coherence that correspond to different curves.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δp=gcRe[(E*+Esc*)×(H+Hsc)E*×H]=gcRe(Esc*×Hsc+E*×Hsc+Esc*×H).
F=cARΔpdA=cR2ΔpdΩ,
γ1=γ2=γ.
w=2g(|Ex1|2+|Ey1|2)(1+cos2γcos2Φ),
pSx=gci(Ex1Ey1*Ey1Ex1*)sin2γsin2Φ,
pSy=pOy=pOx=0,pSz=2gc(|Ex1|2+|Ey1|2)cosγsin2γcos2Φ,
pOz=2gc(|Ex1|2+|Ey1|2)cosγ(1+cos2γcos2Φ).
pSx=gcσ|E0|2sin2γsin2Φ,
F0=2g(|Ex12|+|Ey12|)·πa2.
P0=2gμ(|Ex12|+|Ey12|)(1+cos2Φ)·πa2.
Φij(r,t)=φij(1)(r)+φij(2)(r)+φij(3)(r)+2tr[W(r1,r1,0)]tr[W(r2,r2,0)]·|ηij(1,2)|cos[αij(1,2)]·cos[δ1]+2tr[W(r1,r1,0)]tr[W(r3,r3,0)]·|ηij(1,3)|cos[αij(1,3)]·cos[δ2]+2tr[W(r2,r2,0)]tr[W(r3,r3,0)]·|ηij(2,3)|cos[αij(2,3)]·cos[δ3],
I(r)=ijΦij(r,t),i,j=x,z.
V=mnijtr[W(rm,rm,0]tr[W(rn,rn,0)]φij(1)(r)+φij(2)(r)+φij(3)(r)·ηij(m,n),
Vφ=2ijtr[W(r1,r1,0]tr[W(r2,r2,0)]φij(1)(r)+φij(2)(r)+φij(3)(r)ηij(1,2)+2ijtr[W(r1,r1,0]tr[W(r3,r3,0)]φij(1)(r)+φij(2)(r)+φij(3)(r)ηij(1,3)cos[φ1]+2ijtr[W(r2,r2,0]tr[W(r3,r3,0)]φij(1)(r)+φij(2)(r)+φij(3)(r)ηij(2,3)cos[φ2],
M=max[Vφ]min[Vφ]=2mijtr[W(rm,rm,0]tr[W(r3,r3,0)]φij(m)(r)+φij(3)(r)ηij(m,3),m=1,2;i,j=x,z.
(Fgrad)m=2πnαcKm(1Δxm)2+(1Δzm)2·η(1,2).
v¯(t)=1M(e6πηrMt1)×{1mm2πncαKmη(1,2)(1Δxm)2+(1Δzm)21mm[{Cabs+Cscatt}ncεε0μμ0i,j{φij(1)(r)+φij(2)(r)+2tr[W(r1,r1,0)]tr[W(r2,r2,0)]·ηij(1,2)·cos[(δe)m]}]}.
v¯(t)=1M(e6πηrMt1)2πncαη(1,2)1mmKm(1Δxm)2+(1Δzm)2.
v¯rel(t)=η(1,2).

Metrics