Abstract

Speckle correlation analysis was applied to study the relaxation dynamics in soft porous media saturated by near-critical carbon dioxide. The relaxation of soft matrix deformation was caused by a stepwise change in the fluid pressure. It was found that the deformation rate in the course of relaxation and the relaxation time strongly depend on the temperature of the system. The values of relaxation time reach their maximal values in the vicinity of the critical point of saturating fluid. The contributions of hydrodynamic relaxation of the fluid density and viscoelastic relaxation of the porous matrix to its creeping are analyzed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
    [CrossRef]
  2. A. G. Yodh, N. Georgiades, and D. J. Pine, “Diffusing-wave interferometry,” Opt. Commun. 83, 56–59 (1991).
    [CrossRef]
  3. M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70, 242–245 (1993).
    [CrossRef]
  4. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).
    [CrossRef]
  5. N. Menon and D. J. Durian, “The dynamics of grains in flowing sand,” Science 275, 1920–1922 (1997).
    [CrossRef]
  6. D. J. Durian, D. A. Weitz, and D. J. Pine, “Multiple light-scattering probes of foam structure and dynamics,” Science 252, 686–688 (1991).
    [CrossRef]
  7. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
    [CrossRef]
  8. F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
    [CrossRef]
  9. L. Brunel, A. Brun, P. Snabre, and L. Cipelletti, “Adaptive speckle imaging interferometry: a new technique for the analysis of microstructure dynamics, drying processes and coating formation,” Opt. Express 15, 15250–15259 (2007).
    [CrossRef]
  10. F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing wave spectroscopy of non-ergodic media,” Phys. Rev. E 63, 061404 (2001).
    [CrossRef]
  11. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
    [CrossRef]
  12. V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
    [CrossRef]
  13. P. Zakharov, F. Cardinaux, and F. Scheffold, “Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme,” Phys. Rev. E 73, 011413 (2006).
    [CrossRef]
  14. D. A. Zimnyakov, P. V. Zakharov, V. A. Trifonov, and O. I. Chanilov, “Dynamic light scattering study of the interface evolution in porous media,” JETP Lett. 74, 216–221 (2001).
    [CrossRef]
  15. D. A. Zimnyakov, A. V. Sadovoy, M. A. Vilenskii, P. V. Zakharov, and R. Myllylä, “Critical behavior of phase interfaces in porous media: analysis of scaling properties with the use of noncoherent and coherent light,” J. Exp. Theor. Phys. 108, 311–325 (2009).
    [CrossRef]
  16. A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett. 102, 085702 (2009).
    [CrossRef]
  17. P. Ballesta, Ch. Ligoure, and L. Cipelletti, “Temporal heterogeneity of the slow dynamics of a colloidal paste,” in Proceedings of 3rd International Symposium on Slow Dynamics in Complex Systems (AIP, 2004), Vol. 708, pp. 68–71.
  18. A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E 72, 051401 (2005).
    [CrossRef]
  19. L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Phys. Condens. Matter 17, R253–R285 (2005).
    [CrossRef]
  20. D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, A. I. Omel’chenko, L. V. Kuznetsova, and V. N. Bagratashvili, “Speckle-contrast monitoring of tissue thermal modification,” Appl. Opt. 41, 5989–5996 (2002).
    [CrossRef]
  21. D. A. Zimnyakov, A. P. Sviridov, L. V. Kuznetsova, S. A. Baranov, and N. Yu. Ignat’ieva, “Monitoring of tissue thermal modification with a bundle-based full-field speckle analyzer,” Appl. Opt. 45, 4480–4490 (2006).
    [CrossRef]
  22. D. A. Zimnyakov, A. A. Isaeva, E. A. Isaeva, O. V. Ushakova, S. P. Chekmasov, and S. A. Yuvchenko, “Analysis of the scatter growth in dispersive media with the use of dynamic light scattering,” Appl. Opt. 51, C62–C69 (2012).
    [CrossRef]
  23. X.-L. Wu, D. J. Pine, P. M. Chaikin, J. P. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7, 15–20 (1990).
    [CrossRef]
  24. J. Crassous, M. Erpelding, and A. Amon, “Diffusive waves in a dilating scattering medium,” Phys. Rev. Lett. 103, 013903 (2009).
    [CrossRef]
  25. M. Erpelding, A. Amon, and J. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of solid,” Phys. Rev. E 78, 046104 (2008).
    [CrossRef]
  26. M. Erpelding, B. Dollet, A. Faisant, J. Crassous, and A. Amon, “Diffusing-wave spectroscopy contribution to strain analysis,” Strain 49, 167–174 (2013).
    [CrossRef]
  27. Ph. G. Jessop, T. Ikariya, and R. Noyori, “Homogeneous catalytic hydrogenation of supercritical carbon dioxide,” Nature 368, 231–233 (1994).
    [CrossRef]
  28. C. A. Eckert, B. L. Knutson, and P. G. Debendetti, “Supercritical fluids as solvents for chemical and materials processing,” Nature 383, 313–318 (1996).
    [CrossRef]
  29. X.-R. Ye, Y. Lin, C. Wang, and C. M. Wai, “Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes,” Adv. Mater. 15, 316–319 (2003).
    [CrossRef]
  30. S.-D. Yeo and E. Kiran, “Formation of polymer particles with supercritical fluids,” J. Supercrit. Fluids 34, 287–308 (2005).
    [CrossRef]
  31. E. Akbarinezhad and M. Sabouri, “Synthesis of exfoliated conductive polyaniline–graphite nanocomposites in supercritical CO2,” J. Supercrit. Fluids 75, 81–87 (2013).
    [CrossRef]
  32. V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
    [CrossRef]
  33. M. Holmvall, T. Uesaka, F. Drolet, and S. B. Lindström, “Transfer of a microfluid to a stochastic fibre network,” J. Fluids Struct. 27, 937–946 (2011).
    [CrossRef]
  34. F. J. Galindo-Rosales, L. Campo-Deaño, F. T. Pinho, E. van Bokhorst, P. J. Hamersma, M. S. N. Oliveira, and M. A. Alves, “Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media,” Microfluid. Nanofluid. 12, 485–498 (2012).
    [CrossRef]
  35. Z. Y. Xiao, A. Wang, J. Perumal, and D.-P. Kim, “Facile fabrication of monolithic 3D porous silica microstructures and a microfluidic system embedded with the microstructure,” Adv. Funct. Mater. 20, 1473–1479 (2010).
    [CrossRef]
  36. S. S. Alpert, Y. Yeh, and E. Lipworth, “Observation of time-dependent concentration fluctuations in a binary mixture near the critical temperature using a He-Ne laser,” Phys. Rev. Lett. 14, 486–488 (1965).
    [CrossRef]
  37. S. A. Casalnuovo, R. C. Mockler, and W. J. O’Sullivan, “Rayleigh-linewidth measurements on thin critical fluid films,” Phys. Rev. A 29, 257–270 (1984).
    [CrossRef]
  38. M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004).
    [CrossRef]
  39. A. A. Novitskiy, V. N. Bagratashvili, and M. Poliakoff, “Applying a fibre optic reflectometer to phase measurements in sub- and supercritical water mixtures,” J. Phys. Chem C 115, 1143–1149 (2011).
    [CrossRef]
  40. V. G. Arakcheev, A. A. Valeev, V. B. Morozov, and A. N. Olenin, “CARS diagnostics of molecular media under nanoporous confinement,” Laser Phys. 18, 1451–1458 (2008).
    [CrossRef]
  41. V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
    [CrossRef]
  42. E. W. Lemmon, M. O. McLinden, and D. G. Friend, “Thermophysical properties of fluid systems,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. J. Linstrom and W. G. Mallard, eds. (NIST, 2012), http://webbook.nist.gov/chemistry/fluid/ .
  43. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
    [CrossRef]
  44. A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE, 1999).
  45. H. Z. Cummins and E. R. Pike, eds. Photon Correlation and Light Beating Spectroscopy (Plenum, 1974).
  46. S. L. Jacques, “Monte-Carlo simulations of light transport in tissue (steady state and time of flight),” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welsh and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), pp. 109–144.
  47. P. D. Kaplan, M. H. Kao, A. G. Yodh, and D. J. Pine, “Geometric constraints for the design of diffusing-wave spectroscopy experiments,” Appl. Opt. 32, 3828–3836 (1993).
  48. L. F. Rojas, M. Bina, G. Cerchiari, M. A. Escobedo-Sanchez, F. Ferri, and F. Scheffold, “Photon path length distribution in random media from spectral speckle intensity correlations,” Eur. Phys. J. Spec. Top. 199, 167–180 (2011).
    [CrossRef]
  49. D. A. Zimnyakov, L. V. Kuznetsova, O. V. Ushakova, and R. Myllylä, “On the estimate of effective optical parameters of close-packed fibrillar media,” Quantum Electron. 37, 9–16 (2007).
    [CrossRef]
  50. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, 1982).
  51. G. W. Scherer, “Structure and properties of gels,” Cement and Concrete Research 29, 1149–1157 (1999).
    [CrossRef]
  52. G. W. Scherer, “Dynamic pressurization method for measuring permeability and modulus: I. Theory,” Mat. Constr. 39, 1041–1057 (2006).
    [CrossRef]

2013

M. Erpelding, B. Dollet, A. Faisant, J. Crassous, and A. Amon, “Diffusing-wave spectroscopy contribution to strain analysis,” Strain 49, 167–174 (2013).
[CrossRef]

E. Akbarinezhad and M. Sabouri, “Synthesis of exfoliated conductive polyaniline–graphite nanocomposites in supercritical CO2,” J. Supercrit. Fluids 75, 81–87 (2013).
[CrossRef]

2012

F. J. Galindo-Rosales, L. Campo-Deaño, F. T. Pinho, E. van Bokhorst, P. J. Hamersma, M. S. N. Oliveira, and M. A. Alves, “Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media,” Microfluid. Nanofluid. 12, 485–498 (2012).
[CrossRef]

D. A. Zimnyakov, A. A. Isaeva, E. A. Isaeva, O. V. Ushakova, S. P. Chekmasov, and S. A. Yuvchenko, “Analysis of the scatter growth in dispersive media with the use of dynamic light scattering,” Appl. Opt. 51, C62–C69 (2012).
[CrossRef]

2011

L. F. Rojas, M. Bina, G. Cerchiari, M. A. Escobedo-Sanchez, F. Ferri, and F. Scheffold, “Photon path length distribution in random media from spectral speckle intensity correlations,” Eur. Phys. J. Spec. Top. 199, 167–180 (2011).
[CrossRef]

M. Holmvall, T. Uesaka, F. Drolet, and S. B. Lindström, “Transfer of a microfluid to a stochastic fibre network,” J. Fluids Struct. 27, 937–946 (2011).
[CrossRef]

A. A. Novitskiy, V. N. Bagratashvili, and M. Poliakoff, “Applying a fibre optic reflectometer to phase measurements in sub- and supercritical water mixtures,” J. Phys. Chem C 115, 1143–1149 (2011).
[CrossRef]

2010

Z. Y. Xiao, A. Wang, J. Perumal, and D.-P. Kim, “Facile fabrication of monolithic 3D porous silica microstructures and a microfluidic system embedded with the microstructure,” Adv. Funct. Mater. 20, 1473–1479 (2010).
[CrossRef]

2009

J. Crassous, M. Erpelding, and A. Amon, “Diffusive waves in a dilating scattering medium,” Phys. Rev. Lett. 103, 013903 (2009).
[CrossRef]

D. A. Zimnyakov, A. V. Sadovoy, M. A. Vilenskii, P. V. Zakharov, and R. Myllylä, “Critical behavior of phase interfaces in porous media: analysis of scaling properties with the use of noncoherent and coherent light,” J. Exp. Theor. Phys. 108, 311–325 (2009).
[CrossRef]

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett. 102, 085702 (2009).
[CrossRef]

2008

M. Erpelding, A. Amon, and J. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of solid,” Phys. Rev. E 78, 046104 (2008).
[CrossRef]

V. G. Arakcheev, A. A. Valeev, V. B. Morozov, and A. N. Olenin, “CARS diagnostics of molecular media under nanoporous confinement,” Laser Phys. 18, 1451–1458 (2008).
[CrossRef]

V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
[CrossRef]

2007

D. A. Zimnyakov, L. V. Kuznetsova, O. V. Ushakova, and R. Myllylä, “On the estimate of effective optical parameters of close-packed fibrillar media,” Quantum Electron. 37, 9–16 (2007).
[CrossRef]

L. Brunel, A. Brun, P. Snabre, and L. Cipelletti, “Adaptive speckle imaging interferometry: a new technique for the analysis of microstructure dynamics, drying processes and coating formation,” Opt. Express 15, 15250–15259 (2007).
[CrossRef]

2006

D. A. Zimnyakov, A. P. Sviridov, L. V. Kuznetsova, S. A. Baranov, and N. Yu. Ignat’ieva, “Monitoring of tissue thermal modification with a bundle-based full-field speckle analyzer,” Appl. Opt. 45, 4480–4490 (2006).
[CrossRef]

G. W. Scherer, “Dynamic pressurization method for measuring permeability and modulus: I. Theory,” Mat. Constr. 39, 1041–1057 (2006).
[CrossRef]

P. Zakharov, F. Cardinaux, and F. Scheffold, “Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme,” Phys. Rev. E 73, 011413 (2006).
[CrossRef]

2005

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E 72, 051401 (2005).
[CrossRef]

L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Phys. Condens. Matter 17, R253–R285 (2005).
[CrossRef]

S.-D. Yeo and E. Kiran, “Formation of polymer particles with supercritical fluids,” J. Supercrit. Fluids 34, 287–308 (2005).
[CrossRef]

2004

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004).
[CrossRef]

2003

X.-R. Ye, Y. Lin, C. Wang, and C. M. Wai, “Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes,” Adv. Mater. 15, 316–319 (2003).
[CrossRef]

2002

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
[CrossRef]

D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, A. I. Omel’chenko, L. V. Kuznetsova, and V. N. Bagratashvili, “Speckle-contrast monitoring of tissue thermal modification,” Appl. Opt. 41, 5989–5996 (2002).
[CrossRef]

2001

D. A. Zimnyakov, P. V. Zakharov, V. A. Trifonov, and O. I. Chanilov, “Dynamic light scattering study of the interface evolution in porous media,” JETP Lett. 74, 216–221 (2001).
[CrossRef]

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing wave spectroscopy of non-ergodic media,” Phys. Rev. E 63, 061404 (2001).
[CrossRef]

2000

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
[CrossRef]

1999

G. W. Scherer, “Structure and properties of gels,” Cement and Concrete Research 29, 1149–1157 (1999).
[CrossRef]

1997

1996

C. A. Eckert, B. L. Knutson, and P. G. Debendetti, “Supercritical fluids as solvents for chemical and materials processing,” Nature 383, 313–318 (1996).
[CrossRef]

1995

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[CrossRef]

1994

Ph. G. Jessop, T. Ikariya, and R. Noyori, “Homogeneous catalytic hydrogenation of supercritical carbon dioxide,” Nature 368, 231–233 (1994).
[CrossRef]

1993

M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70, 242–245 (1993).
[CrossRef]

P. D. Kaplan, M. H. Kao, A. G. Yodh, and D. J. Pine, “Geometric constraints for the design of diffusing-wave spectroscopy experiments,” Appl. Opt. 32, 3828–3836 (1993).

1991

D. J. Durian, D. A. Weitz, and D. J. Pine, “Multiple light-scattering probes of foam structure and dynamics,” Science 252, 686–688 (1991).
[CrossRef]

A. G. Yodh, N. Georgiades, and D. J. Pine, “Diffusing-wave interferometry,” Opt. Commun. 83, 56–59 (1991).
[CrossRef]

1990

1988

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

1987

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

1984

S. A. Casalnuovo, R. C. Mockler, and W. J. O’Sullivan, “Rayleigh-linewidth measurements on thin critical fluid films,” Phys. Rev. A 29, 257–270 (1984).
[CrossRef]

1965

S. S. Alpert, Y. Yeh, and E. Lipworth, “Observation of time-dependent concentration fluctuations in a binary mixture near the critical temperature using a He-Ne laser,” Phys. Rev. Lett. 14, 486–488 (1965).
[CrossRef]

Agafonov, D. N.

Akbarinezhad, E.

E. Akbarinezhad and M. Sabouri, “Synthesis of exfoliated conductive polyaniline–graphite nanocomposites in supercritical CO2,” J. Supercrit. Fluids 75, 81–87 (2013).
[CrossRef]

Alpert, S. S.

S. S. Alpert, Y. Yeh, and E. Lipworth, “Observation of time-dependent concentration fluctuations in a binary mixture near the critical temperature using a He-Ne laser,” Phys. Rev. Lett. 14, 486–488 (1965).
[CrossRef]

Alves, M. A.

F. J. Galindo-Rosales, L. Campo-Deaño, F. T. Pinho, E. van Bokhorst, P. J. Hamersma, M. S. N. Oliveira, and M. A. Alves, “Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media,” Microfluid. Nanofluid. 12, 485–498 (2012).
[CrossRef]

Amon, A.

M. Erpelding, B. Dollet, A. Faisant, J. Crassous, and A. Amon, “Diffusing-wave spectroscopy contribution to strain analysis,” Strain 49, 167–174 (2013).
[CrossRef]

J. Crassous, M. Erpelding, and A. Amon, “Diffusive waves in a dilating scattering medium,” Phys. Rev. Lett. 103, 013903 (2009).
[CrossRef]

M. Erpelding, A. Amon, and J. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of solid,” Phys. Rev. E 78, 046104 (2008).
[CrossRef]

Arakcheev, V. G.

V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
[CrossRef]

V. G. Arakcheev, A. A. Valeev, V. B. Morozov, and A. N. Olenin, “CARS diagnostics of molecular media under nanoporous confinement,” Laser Phys. 18, 1451–1458 (2008).
[CrossRef]

Avdeev, M. V.

M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004).
[CrossRef]

Bagratashvili, V. N.

A. A. Novitskiy, V. N. Bagratashvili, and M. Poliakoff, “Applying a fibre optic reflectometer to phase measurements in sub- and supercritical water mixtures,” J. Phys. Chem C 115, 1143–1149 (2011).
[CrossRef]

V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
[CrossRef]

M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004).
[CrossRef]

D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, A. I. Omel’chenko, L. V. Kuznetsova, and V. N. Bagratashvili, “Speckle-contrast monitoring of tissue thermal modification,” Appl. Opt. 41, 5989–5996 (2002).
[CrossRef]

Ballesta, P.

P. Ballesta, Ch. Ligoure, and L. Cipelletti, “Temporal heterogeneity of the slow dynamics of a colloidal paste,” in Proceedings of 3rd International Symposium on Slow Dynamics in Complex Systems (AIP, 2004), Vol. 708, pp. 68–71.

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Baranov, S. A.

Bina, M.

L. F. Rojas, M. Bina, G. Cerchiari, M. A. Escobedo-Sanchez, F. Ferri, and F. Scheffold, “Photon path length distribution in random media from spectral speckle intensity correlations,” Eur. Phys. J. Spec. Top. 199, 167–180 (2011).
[CrossRef]

Bissig, H.

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E 72, 051401 (2005).
[CrossRef]

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

Boas, D. A.

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).
[CrossRef]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[CrossRef]

Brun, A.

Brunel, L.

Campbell, L. E.

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[CrossRef]

Campo-Deaño, L.

F. J. Galindo-Rosales, L. Campo-Deaño, F. T. Pinho, E. van Bokhorst, P. J. Hamersma, M. S. N. Oliveira, and M. A. Alves, “Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media,” Microfluid. Nanofluid. 12, 485–498 (2012).
[CrossRef]

Cardinaux, F.

P. Zakharov, F. Cardinaux, and F. Scheffold, “Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme,” Phys. Rev. E 73, 011413 (2006).
[CrossRef]

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

Casalnuovo, S. A.

S. A. Casalnuovo, R. C. Mockler, and W. J. O’Sullivan, “Rayleigh-linewidth measurements on thin critical fluid films,” Phys. Rev. A 29, 257–270 (1984).
[CrossRef]

Cerchiari, G.

L. F. Rojas, M. Bina, G. Cerchiari, M. A. Escobedo-Sanchez, F. Ferri, and F. Scheffold, “Photon path length distribution in random media from spectral speckle intensity correlations,” Eur. Phys. J. Spec. Top. 199, 167–180 (2011).
[CrossRef]

Chaikin, P. M.

X.-L. Wu, D. J. Pine, P. M. Chaikin, J. P. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7, 15–20 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

Chanilov, O. I.

D. A. Zimnyakov, P. V. Zakharov, V. A. Trifonov, and O. I. Chanilov, “Dynamic light scattering study of the interface evolution in porous media,” JETP Lett. 74, 216–221 (2001).
[CrossRef]

Chekmasov, S. P.

Cipelletti, L.

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett. 102, 085702 (2009).
[CrossRef]

L. Brunel, A. Brun, P. Snabre, and L. Cipelletti, “Adaptive speckle imaging interferometry: a new technique for the analysis of microstructure dynamics, drying processes and coating formation,” Opt. Express 15, 15250–15259 (2007).
[CrossRef]

L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Phys. Condens. Matter 17, R253–R285 (2005).
[CrossRef]

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E 72, 051401 (2005).
[CrossRef]

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

P. Ballesta, Ch. Ligoure, and L. Cipelletti, “Temporal heterogeneity of the slow dynamics of a colloidal paste,” in Proceedings of 3rd International Symposium on Slow Dynamics in Complex Systems (AIP, 2004), Vol. 708, pp. 68–71.

Crassous, J.

M. Erpelding, B. Dollet, A. Faisant, J. Crassous, and A. Amon, “Diffusing-wave spectroscopy contribution to strain analysis,” Strain 49, 167–174 (2013).
[CrossRef]

J. Crassous, M. Erpelding, and A. Amon, “Diffusive waves in a dilating scattering medium,” Phys. Rev. Lett. 103, 013903 (2009).
[CrossRef]

M. Erpelding, A. Amon, and J. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of solid,” Phys. Rev. E 78, 046104 (2008).
[CrossRef]

Debendetti, P. G.

C. A. Eckert, B. L. Knutson, and P. G. Debendetti, “Supercritical fluids as solvents for chemical and materials processing,” Nature 383, 313–318 (1996).
[CrossRef]

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Dollet, B.

M. Erpelding, B. Dollet, A. Faisant, J. Crassous, and A. Amon, “Diffusing-wave spectroscopy contribution to strain analysis,” Strain 49, 167–174 (2013).
[CrossRef]

Drolet, F.

M. Holmvall, T. Uesaka, F. Drolet, and S. B. Lindström, “Transfer of a microfluid to a stochastic fibre network,” J. Fluids Struct. 27, 937–946 (2011).
[CrossRef]

Dubyanskiy, S. A.

V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
[CrossRef]

Duri, A.

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett. 102, 085702 (2009).
[CrossRef]

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E 72, 051401 (2005).
[CrossRef]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

N. Menon and D. J. Durian, “The dynamics of grains in flowing sand,” Science 275, 1920–1922 (1997).
[CrossRef]

D. J. Durian, D. A. Weitz, and D. J. Pine, “Multiple light-scattering probes of foam structure and dynamics,” Science 252, 686–688 (1991).
[CrossRef]

Eckert, C. A.

C. A. Eckert, B. L. Knutson, and P. G. Debendetti, “Supercritical fluids as solvents for chemical and materials processing,” Nature 383, 313–318 (1996).
[CrossRef]

Erpelding, M.

M. Erpelding, B. Dollet, A. Faisant, J. Crassous, and A. Amon, “Diffusing-wave spectroscopy contribution to strain analysis,” Strain 49, 167–174 (2013).
[CrossRef]

J. Crassous, M. Erpelding, and A. Amon, “Diffusive waves in a dilating scattering medium,” Phys. Rev. Lett. 103, 013903 (2009).
[CrossRef]

M. Erpelding, A. Amon, and J. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of solid,” Phys. Rev. E 78, 046104 (2008).
[CrossRef]

Escobedo-Sanchez, M. A.

L. F. Rojas, M. Bina, G. Cerchiari, M. A. Escobedo-Sanchez, F. Ferri, and F. Scheffold, “Photon path length distribution in random media from spectral speckle intensity correlations,” Eur. Phys. J. Spec. Top. 199, 167–180 (2011).
[CrossRef]

Faisant, A.

M. Erpelding, B. Dollet, A. Faisant, J. Crassous, and A. Amon, “Diffusing-wave spectroscopy contribution to strain analysis,” Strain 49, 167–174 (2013).
[CrossRef]

Ferri, F.

L. F. Rojas, M. Bina, G. Cerchiari, M. A. Escobedo-Sanchez, F. Ferri, and F. Scheffold, “Photon path length distribution in random media from spectral speckle intensity correlations,” Eur. Phys. J. Spec. Top. 199, 167–180 (2011).
[CrossRef]

Friend, D. G.

E. W. Lemmon, M. O. McLinden, and D. G. Friend, “Thermophysical properties of fluid systems,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. J. Linstrom and W. G. Mallard, eds. (NIST, 2012), http://webbook.nist.gov/chemistry/fluid/ .

Galindo-Rosales, F. J.

F. J. Galindo-Rosales, L. Campo-Deaño, F. T. Pinho, E. van Bokhorst, P. J. Hamersma, M. S. N. Oliveira, and M. A. Alves, “Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media,” Microfluid. Nanofluid. 12, 485–498 (2012).
[CrossRef]

Georgiades, N.

A. G. Yodh, N. Georgiades, and D. J. Pine, “Diffusing-wave interferometry,” Opt. Commun. 83, 56–59 (1991).
[CrossRef]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Gregg, S. J.

S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, 1982).

Hamersma, P. J.

F. J. Galindo-Rosales, L. Campo-Deaño, F. T. Pinho, E. van Bokhorst, P. J. Hamersma, M. S. N. Oliveira, and M. A. Alves, “Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media,” Microfluid. Nanofluid. 12, 485–498 (2012).
[CrossRef]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

Holmvall, M.

M. Holmvall, T. Uesaka, F. Drolet, and S. B. Lindström, “Transfer of a microfluid to a stochastic fibre network,” J. Fluids Struct. 27, 937–946 (2011).
[CrossRef]

Huang, J. P.

Ignat’ieva, N. Yu.

Ikariya, T.

Ph. G. Jessop, T. Ikariya, and R. Noyori, “Homogeneous catalytic hydrogenation of supercritical carbon dioxide,” Nature 368, 231–233 (1994).
[CrossRef]

Isaeva, A. A.

Isaeva, E. A.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE, 1999).

Jacques, S. L.

S. L. Jacques, “Monte-Carlo simulations of light transport in tissue (steady state and time of flight),” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welsh and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), pp. 109–144.

Jessop, Ph. G.

Ph. G. Jessop, T. Ikariya, and R. Noyori, “Homogeneous catalytic hydrogenation of supercritical carbon dioxide,” Nature 368, 231–233 (1994).
[CrossRef]

Jie, K.

M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004).
[CrossRef]

Kao, M. H.

M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70, 242–245 (1993).
[CrossRef]

P. D. Kaplan, M. H. Kao, A. G. Yodh, and D. J. Pine, “Geometric constraints for the design of diffusing-wave spectroscopy experiments,” Appl. Opt. 32, 3828–3836 (1993).

Kaplan, P. D.

Kim, D.-P.

Z. Y. Xiao, A. Wang, J. Perumal, and D.-P. Kim, “Facile fabrication of monolithic 3D porous silica microstructures and a microfluidic system embedded with the microstructure,” Adv. Funct. Mater. 20, 1473–1479 (2010).
[CrossRef]

Kiran, E.

S.-D. Yeo and E. Kiran, “Formation of polymer particles with supercritical fluids,” J. Supercrit. Fluids 34, 287–308 (2005).
[CrossRef]

Knutson, B. L.

C. A. Eckert, B. L. Knutson, and P. G. Debendetti, “Supercritical fluids as solvents for chemical and materials processing,” Nature 383, 313–318 (1996).
[CrossRef]

Konovalov, A. N.

M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004).
[CrossRef]

Kuznetsova, L. V.

Lemmon, E. W.

E. W. Lemmon, M. O. McLinden, and D. G. Friend, “Thermophysical properties of fluid systems,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. J. Linstrom and W. G. Mallard, eds. (NIST, 2012), http://webbook.nist.gov/chemistry/fluid/ .

Lequeux, F.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
[CrossRef]

Ligoure, Ch.

P. Ballesta, Ch. Ligoure, and L. Cipelletti, “Temporal heterogeneity of the slow dynamics of a colloidal paste,” in Proceedings of 3rd International Symposium on Slow Dynamics in Complex Systems (AIP, 2004), Vol. 708, pp. 68–71.

Lin, Y.

X.-R. Ye, Y. Lin, C. Wang, and C. M. Wai, “Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes,” Adv. Mater. 15, 316–319 (2003).
[CrossRef]

Lindström, S. B.

M. Holmvall, T. Uesaka, F. Drolet, and S. B. Lindström, “Transfer of a microfluid to a stochastic fibre network,” J. Fluids Struct. 27, 937–946 (2011).
[CrossRef]

Lipworth, E.

S. S. Alpert, Y. Yeh, and E. Lipworth, “Observation of time-dependent concentration fluctuations in a binary mixture near the critical temperature using a He-Ne laser,” Phys. Rev. Lett. 14, 486–488 (1965).
[CrossRef]

Maret, G.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

McLinden, M. O.

E. W. Lemmon, M. O. McLinden, and D. G. Friend, “Thermophysical properties of fluid systems,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. J. Linstrom and W. G. Mallard, eds. (NIST, 2012), http://webbook.nist.gov/chemistry/fluid/ .

Menon, N.

N. Menon and D. J. Durian, “The dynamics of grains in flowing sand,” Science 275, 1920–1922 (1997).
[CrossRef]

Mockler, R. C.

S. A. Casalnuovo, R. C. Mockler, and W. J. O’Sullivan, “Rayleigh-linewidth measurements on thin critical fluid films,” Phys. Rev. A 29, 257–270 (1984).
[CrossRef]

Morozov, V. B.

V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
[CrossRef]

V. G. Arakcheev, A. A. Valeev, V. B. Morozov, and A. N. Olenin, “CARS diagnostics of molecular media under nanoporous confinement,” Laser Phys. 18, 1451–1458 (2008).
[CrossRef]

Mulloni, V.

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
[CrossRef]

Myllylä, R.

D. A. Zimnyakov, A. V. Sadovoy, M. A. Vilenskii, P. V. Zakharov, and R. Myllylä, “Critical behavior of phase interfaces in porous media: analysis of scaling properties with the use of noncoherent and coherent light,” J. Exp. Theor. Phys. 108, 311–325 (2009).
[CrossRef]

D. A. Zimnyakov, L. V. Kuznetsova, O. V. Ushakova, and R. Myllylä, “On the estimate of effective optical parameters of close-packed fibrillar media,” Quantum Electron. 37, 9–16 (2007).
[CrossRef]

Novitskiy, A. A.

A. A. Novitskiy, V. N. Bagratashvili, and M. Poliakoff, “Applying a fibre optic reflectometer to phase measurements in sub- and supercritical water mixtures,” J. Phys. Chem C 115, 1143–1149 (2011).
[CrossRef]

Noyori, R.

Ph. G. Jessop, T. Ikariya, and R. Noyori, “Homogeneous catalytic hydrogenation of supercritical carbon dioxide,” Nature 368, 231–233 (1994).
[CrossRef]

O’Sullivan, W. J.

S. A. Casalnuovo, R. C. Mockler, and W. J. O’Sullivan, “Rayleigh-linewidth measurements on thin critical fluid films,” Phys. Rev. A 29, 257–270 (1984).
[CrossRef]

Olenin, A. N.

V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
[CrossRef]

V. G. Arakcheev, A. A. Valeev, V. B. Morozov, and A. N. Olenin, “CARS diagnostics of molecular media under nanoporous confinement,” Laser Phys. 18, 1451–1458 (2008).
[CrossRef]

Oliveira, M. S. N.

F. J. Galindo-Rosales, L. Campo-Deaño, F. T. Pinho, E. van Bokhorst, P. J. Hamersma, M. S. N. Oliveira, and M. A. Alves, “Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media,” Microfluid. Nanofluid. 12, 485–498 (2012).
[CrossRef]

Omel’chenko, A. I.

Pavesi, L.

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
[CrossRef]

Perumal, J.

Z. Y. Xiao, A. Wang, J. Perumal, and D.-P. Kim, “Facile fabrication of monolithic 3D porous silica microstructures and a microfluidic system embedded with the microstructure,” Adv. Funct. Mater. 20, 1473–1479 (2010).
[CrossRef]

Pine, D. J.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
[CrossRef]

M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70, 242–245 (1993).
[CrossRef]

P. D. Kaplan, M. H. Kao, A. G. Yodh, and D. J. Pine, “Geometric constraints for the design of diffusing-wave spectroscopy experiments,” Appl. Opt. 32, 3828–3836 (1993).

D. J. Durian, D. A. Weitz, and D. J. Pine, “Multiple light-scattering probes of foam structure and dynamics,” Science 252, 686–688 (1991).
[CrossRef]

A. G. Yodh, N. Georgiades, and D. J. Pine, “Diffusing-wave interferometry,” Opt. Commun. 83, 56–59 (1991).
[CrossRef]

X.-L. Wu, D. J. Pine, P. M. Chaikin, J. P. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7, 15–20 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

Pinho, F. T.

F. J. Galindo-Rosales, L. Campo-Deaño, F. T. Pinho, E. van Bokhorst, P. J. Hamersma, M. S. N. Oliveira, and M. A. Alves, “Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media,” Microfluid. Nanofluid. 12, 485–498 (2012).
[CrossRef]

Poliakoff, M.

A. A. Novitskiy, V. N. Bagratashvili, and M. Poliakoff, “Applying a fibre optic reflectometer to phase measurements in sub- and supercritical water mixtures,” J. Phys. Chem C 115, 1143–1149 (2011).
[CrossRef]

M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004).
[CrossRef]

Popov, V. K.

V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
[CrossRef]

M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004).
[CrossRef]

Ramos, L.

L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Phys. Condens. Matter 17, R253–R285 (2005).
[CrossRef]

Rojas, L. F.

L. F. Rojas, M. Bina, G. Cerchiari, M. A. Escobedo-Sanchez, F. Ferri, and F. Scheffold, “Photon path length distribution in random media from spectral speckle intensity correlations,” Eur. Phys. J. Spec. Top. 199, 167–180 (2011).
[CrossRef]

Rojas-Ochoa, L. F.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

Romer, S.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing wave spectroscopy of non-ergodic media,” Phys. Rev. E 63, 061404 (2001).
[CrossRef]

Sabouri, M.

E. Akbarinezhad and M. Sabouri, “Synthesis of exfoliated conductive polyaniline–graphite nanocomposites in supercritical CO2,” J. Supercrit. Fluids 75, 81–87 (2013).
[CrossRef]

Sadovoy, A. V.

D. A. Zimnyakov, A. V. Sadovoy, M. A. Vilenskii, P. V. Zakharov, and R. Myllylä, “Critical behavior of phase interfaces in porous media: analysis of scaling properties with the use of noncoherent and coherent light,” J. Exp. Theor. Phys. 108, 311–325 (2009).
[CrossRef]

Scheffold, F.

L. F. Rojas, M. Bina, G. Cerchiari, M. A. Escobedo-Sanchez, F. Ferri, and F. Scheffold, “Photon path length distribution in random media from spectral speckle intensity correlations,” Eur. Phys. J. Spec. Top. 199, 167–180 (2011).
[CrossRef]

P. Zakharov, F. Cardinaux, and F. Scheffold, “Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme,” Phys. Rev. E 73, 011413 (2006).
[CrossRef]

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing wave spectroscopy of non-ergodic media,” Phys. Rev. E 63, 061404 (2001).
[CrossRef]

Scherer, G. W.

G. W. Scherer, “Dynamic pressurization method for measuring permeability and modulus: I. Theory,” Mat. Constr. 39, 1041–1057 (2006).
[CrossRef]

G. W. Scherer, “Structure and properties of gels,” Cement and Concrete Research 29, 1149–1157 (1999).
[CrossRef]

Schurtenberger, P.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing wave spectroscopy of non-ergodic media,” Phys. Rev. E 63, 061404 (2001).
[CrossRef]

Sessoms, D. A.

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett. 102, 085702 (2009).
[CrossRef]

Sing, K. S. W.

S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, 1982).

Skipetrov, S. E.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing wave spectroscopy of non-ergodic media,” Phys. Rev. E 63, 061404 (2001).
[CrossRef]

Snabre, P.

Sokolova, M.

M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004).
[CrossRef]

Stradner, A.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Sviridov, A. P.

Trappe, V.

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett. 102, 085702 (2009).
[CrossRef]

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E 72, 051401 (2005).
[CrossRef]

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

Trifonov, V. A.

D. A. Zimnyakov, P. V. Zakharov, V. A. Trifonov, and O. I. Chanilov, “Dynamic light scattering study of the interface evolution in porous media,” JETP Lett. 74, 216–221 (2001).
[CrossRef]

Tsypina, S. I.

M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004).
[CrossRef]

Tunkin, V. G.

V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
[CrossRef]

Uesaka, T.

M. Holmvall, T. Uesaka, F. Drolet, and S. B. Lindström, “Transfer of a microfluid to a stochastic fibre network,” J. Fluids Struct. 27, 937–946 (2011).
[CrossRef]

Urban, C.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

Ushakova, O. V.

D. A. Zimnyakov, A. A. Isaeva, E. A. Isaeva, O. V. Ushakova, S. P. Chekmasov, and S. A. Yuvchenko, “Analysis of the scatter growth in dispersive media with the use of dynamic light scattering,” Appl. Opt. 51, C62–C69 (2012).
[CrossRef]

D. A. Zimnyakov, L. V. Kuznetsova, O. V. Ushakova, and R. Myllylä, “On the estimate of effective optical parameters of close-packed fibrillar media,” Quantum Electron. 37, 9–16 (2007).
[CrossRef]

Valeev, A. A.

V. G. Arakcheev, A. A. Valeev, V. B. Morozov, and A. N. Olenin, “CARS diagnostics of molecular media under nanoporous confinement,” Laser Phys. 18, 1451–1458 (2008).
[CrossRef]

V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
[CrossRef]

van Bokhorst, E.

F. J. Galindo-Rosales, L. Campo-Deaño, F. T. Pinho, E. van Bokhorst, P. J. Hamersma, M. S. N. Oliveira, and M. A. Alves, “Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media,” Microfluid. Nanofluid. 12, 485–498 (2012).
[CrossRef]

Viasnoff, V.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
[CrossRef]

Vilenskii, M. A.

D. A. Zimnyakov, A. V. Sadovoy, M. A. Vilenskii, P. V. Zakharov, and R. Myllylä, “Critical behavior of phase interfaces in porous media: analysis of scaling properties with the use of noncoherent and coherent light,” J. Exp. Theor. Phys. 108, 311–325 (2009).
[CrossRef]

Wai, C. M.

X.-R. Ye, Y. Lin, C. Wang, and C. M. Wai, “Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes,” Adv. Mater. 15, 316–319 (2003).
[CrossRef]

Wang, A.

Z. Y. Xiao, A. Wang, J. Perumal, and D.-P. Kim, “Facile fabrication of monolithic 3D porous silica microstructures and a microfluidic system embedded with the microstructure,” Adv. Funct. Mater. 20, 1473–1479 (2010).
[CrossRef]

Wang, C.

X.-R. Ye, Y. Lin, C. Wang, and C. M. Wai, “Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes,” Adv. Mater. 15, 316–319 (2003).
[CrossRef]

Weitz, D. A.

D. J. Durian, D. A. Weitz, and D. J. Pine, “Multiple light-scattering probes of foam structure and dynamics,” Science 252, 686–688 (1991).
[CrossRef]

X.-L. Wu, D. J. Pine, P. M. Chaikin, J. P. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7, 15–20 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

Wolf, P. E.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

Wu, X.-L.

Xiao, Z. Y.

Z. Y. Xiao, A. Wang, J. Perumal, and D.-P. Kim, “Facile fabrication of monolithic 3D porous silica microstructures and a microfluidic system embedded with the microstructure,” Adv. Funct. Mater. 20, 1473–1479 (2010).
[CrossRef]

Yakovlev, D. V.

V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
[CrossRef]

Ye, X.-R.

X.-R. Ye, Y. Lin, C. Wang, and C. M. Wai, “Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes,” Adv. Mater. 15, 316–319 (2003).
[CrossRef]

Yeh, Y.

S. S. Alpert, Y. Yeh, and E. Lipworth, “Observation of time-dependent concentration fluctuations in a binary mixture near the critical temperature using a He-Ne laser,” Phys. Rev. Lett. 14, 486–488 (1965).
[CrossRef]

Yeo, S.-D.

S.-D. Yeo and E. Kiran, “Formation of polymer particles with supercritical fluids,” J. Supercrit. Fluids 34, 287–308 (2005).
[CrossRef]

Yodh, A. G.

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).
[CrossRef]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[CrossRef]

M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70, 242–245 (1993).
[CrossRef]

P. D. Kaplan, M. H. Kao, A. G. Yodh, and D. J. Pine, “Geometric constraints for the design of diffusing-wave spectroscopy experiments,” Appl. Opt. 32, 3828–3836 (1993).

A. G. Yodh, N. Georgiades, and D. J. Pine, “Diffusing-wave interferometry,” Opt. Commun. 83, 56–59 (1991).
[CrossRef]

Yuvchenko, S. A.

Zakharov, P.

P. Zakharov, F. Cardinaux, and F. Scheffold, “Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme,” Phys. Rev. E 73, 011413 (2006).
[CrossRef]

Zakharov, P. V.

D. A. Zimnyakov, A. V. Sadovoy, M. A. Vilenskii, P. V. Zakharov, and R. Myllylä, “Critical behavior of phase interfaces in porous media: analysis of scaling properties with the use of noncoherent and coherent light,” J. Exp. Theor. Phys. 108, 311–325 (2009).
[CrossRef]

D. A. Zimnyakov, P. V. Zakharov, V. A. Trifonov, and O. I. Chanilov, “Dynamic light scattering study of the interface evolution in porous media,” JETP Lett. 74, 216–221 (2001).
[CrossRef]

Zimnyakov, D. A.

D. A. Zimnyakov, A. A. Isaeva, E. A. Isaeva, O. V. Ushakova, S. P. Chekmasov, and S. A. Yuvchenko, “Analysis of the scatter growth in dispersive media with the use of dynamic light scattering,” Appl. Opt. 51, C62–C69 (2012).
[CrossRef]

D. A. Zimnyakov, A. V. Sadovoy, M. A. Vilenskii, P. V. Zakharov, and R. Myllylä, “Critical behavior of phase interfaces in porous media: analysis of scaling properties with the use of noncoherent and coherent light,” J. Exp. Theor. Phys. 108, 311–325 (2009).
[CrossRef]

D. A. Zimnyakov, L. V. Kuznetsova, O. V. Ushakova, and R. Myllylä, “On the estimate of effective optical parameters of close-packed fibrillar media,” Quantum Electron. 37, 9–16 (2007).
[CrossRef]

D. A. Zimnyakov, A. P. Sviridov, L. V. Kuznetsova, S. A. Baranov, and N. Yu. Ignat’ieva, “Monitoring of tissue thermal modification with a bundle-based full-field speckle analyzer,” Appl. Opt. 45, 4480–4490 (2006).
[CrossRef]

D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, A. I. Omel’chenko, L. V. Kuznetsova, and V. N. Bagratashvili, “Speckle-contrast monitoring of tissue thermal modification,” Appl. Opt. 41, 5989–5996 (2002).
[CrossRef]

D. A. Zimnyakov, P. V. Zakharov, V. A. Trifonov, and O. I. Chanilov, “Dynamic light scattering study of the interface evolution in porous media,” JETP Lett. 74, 216–221 (2001).
[CrossRef]

Adv. Funct. Mater.

Z. Y. Xiao, A. Wang, J. Perumal, and D.-P. Kim, “Facile fabrication of monolithic 3D porous silica microstructures and a microfluidic system embedded with the microstructure,” Adv. Funct. Mater. 20, 1473–1479 (2010).
[CrossRef]

Adv. Mater.

X.-R. Ye, Y. Lin, C. Wang, and C. M. Wai, “Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes,” Adv. Mater. 15, 316–319 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
[CrossRef]

Cement and Concrete Research

G. W. Scherer, “Structure and properties of gels,” Cement and Concrete Research 29, 1149–1157 (1999).
[CrossRef]

Eur. Phys. J. Spec. Top.

L. F. Rojas, M. Bina, G. Cerchiari, M. A. Escobedo-Sanchez, F. Ferri, and F. Scheffold, “Photon path length distribution in random media from spectral speckle intensity correlations,” Eur. Phys. J. Spec. Top. 199, 167–180 (2011).
[CrossRef]

J. Exp. Theor. Phys.

D. A. Zimnyakov, A. V. Sadovoy, M. A. Vilenskii, P. V. Zakharov, and R. Myllylä, “Critical behavior of phase interfaces in porous media: analysis of scaling properties with the use of noncoherent and coherent light,” J. Exp. Theor. Phys. 108, 311–325 (2009).
[CrossRef]

J. Fluids Struct.

M. Holmvall, T. Uesaka, F. Drolet, and S. B. Lindström, “Transfer of a microfluid to a stochastic fibre network,” J. Fluids Struct. 27, 937–946 (2011).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Chem C

A. A. Novitskiy, V. N. Bagratashvili, and M. Poliakoff, “Applying a fibre optic reflectometer to phase measurements in sub- and supercritical water mixtures,” J. Phys. Chem C 115, 1143–1149 (2011).
[CrossRef]

J. Phys. Condens. Matter

L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Phys. Condens. Matter 17, R253–R285 (2005).
[CrossRef]

J. Raman Spectrosc.

V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008).
[CrossRef]

J. Supercrit. Fluids

S.-D. Yeo and E. Kiran, “Formation of polymer particles with supercritical fluids,” J. Supercrit. Fluids 34, 287–308 (2005).
[CrossRef]

E. Akbarinezhad and M. Sabouri, “Synthesis of exfoliated conductive polyaniline–graphite nanocomposites in supercritical CO2,” J. Supercrit. Fluids 75, 81–87 (2013).
[CrossRef]

JETP Lett.

D. A. Zimnyakov, P. V. Zakharov, V. A. Trifonov, and O. I. Chanilov, “Dynamic light scattering study of the interface evolution in porous media,” JETP Lett. 74, 216–221 (2001).
[CrossRef]

Laser Phys.

V. G. Arakcheev, A. A. Valeev, V. B. Morozov, and A. N. Olenin, “CARS diagnostics of molecular media under nanoporous confinement,” Laser Phys. 18, 1451–1458 (2008).
[CrossRef]

Mat. Constr.

G. W. Scherer, “Dynamic pressurization method for measuring permeability and modulus: I. Theory,” Mat. Constr. 39, 1041–1057 (2006).
[CrossRef]

Microfluid. Nanofluid.

F. J. Galindo-Rosales, L. Campo-Deaño, F. T. Pinho, E. van Bokhorst, P. J. Hamersma, M. S. N. Oliveira, and M. A. Alves, “Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media,” Microfluid. Nanofluid. 12, 485–498 (2012).
[CrossRef]

Nature

Ph. G. Jessop, T. Ikariya, and R. Noyori, “Homogeneous catalytic hydrogenation of supercritical carbon dioxide,” Nature 368, 231–233 (1994).
[CrossRef]

C. A. Eckert, B. L. Knutson, and P. G. Debendetti, “Supercritical fluids as solvents for chemical and materials processing,” Nature 383, 313–318 (1996).
[CrossRef]

Opt. Commun.

A. G. Yodh, N. Georgiades, and D. J. Pine, “Diffusing-wave interferometry,” Opt. Commun. 83, 56–59 (1991).
[CrossRef]

Opt. Express

Phys. Chem. Chem. Phys.

M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004).
[CrossRef]

Phys. Rev. A

S. A. Casalnuovo, R. C. Mockler, and W. J. O’Sullivan, “Rayleigh-linewidth measurements on thin critical fluid films,” Phys. Rev. A 29, 257–270 (1984).
[CrossRef]

Phys. Rev. E

M. Erpelding, A. Amon, and J. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of solid,” Phys. Rev. E 78, 046104 (2008).
[CrossRef]

F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing wave spectroscopy of non-ergodic media,” Phys. Rev. E 63, 061404 (2001).
[CrossRef]

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E 72, 051401 (2005).
[CrossRef]

P. Zakharov, F. Cardinaux, and F. Scheffold, “Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme,” Phys. Rev. E 73, 011413 (2006).
[CrossRef]

Phys. Rev. Lett.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[CrossRef]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[CrossRef]

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett. 102, 085702 (2009).
[CrossRef]

M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70, 242–245 (1993).
[CrossRef]

J. Crassous, M. Erpelding, and A. Amon, “Diffusive waves in a dilating scattering medium,” Phys. Rev. Lett. 103, 013903 (2009).
[CrossRef]

S. S. Alpert, Y. Yeh, and E. Lipworth, “Observation of time-dependent concentration fluctuations in a binary mixture near the critical temperature using a He-Ne laser,” Phys. Rev. Lett. 14, 486–488 (1965).
[CrossRef]

Prog. Colloid Polym. Sci.

F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004).
[CrossRef]

Quantum Electron.

D. A. Zimnyakov, L. V. Kuznetsova, O. V. Ushakova, and R. Myllylä, “On the estimate of effective optical parameters of close-packed fibrillar media,” Quantum Electron. 37, 9–16 (2007).
[CrossRef]

Rev. Sci. Instrum.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002).
[CrossRef]

Science

N. Menon and D. J. Durian, “The dynamics of grains in flowing sand,” Science 275, 1920–1922 (1997).
[CrossRef]

D. J. Durian, D. A. Weitz, and D. J. Pine, “Multiple light-scattering probes of foam structure and dynamics,” Science 252, 686–688 (1991).
[CrossRef]

Strain

M. Erpelding, B. Dollet, A. Faisant, J. Crassous, and A. Amon, “Diffusing-wave spectroscopy contribution to strain analysis,” Strain 49, 167–174 (2013).
[CrossRef]

Z. Phys. B

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987).
[CrossRef]

Other

A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE, 1999).

H. Z. Cummins and E. R. Pike, eds. Photon Correlation and Light Beating Spectroscopy (Plenum, 1974).

S. L. Jacques, “Monte-Carlo simulations of light transport in tissue (steady state and time of flight),” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welsh and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), pp. 109–144.

E. W. Lemmon, M. O. McLinden, and D. G. Friend, “Thermophysical properties of fluid systems,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. J. Linstrom and W. G. Mallard, eds. (NIST, 2012), http://webbook.nist.gov/chemistry/fluid/ .

S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, 1982).

P. Ballesta, Ch. Ligoure, and L. Cipelletti, “Temporal heterogeneity of the slow dynamics of a colloidal paste,” in Proceedings of 3rd International Symposium on Slow Dynamics in Complex Systems (AIP, 2004), Vol. 708, pp. 68–71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scheme of the experimental setup. 1—He–Ne laser; 2—foamed plastic jacket; 3—aluminum housing; 4—high-pressure cell; 5—sapphire window; 6—high-pressure capillary; 7—pressure sensor; 8—quartz oscillator; 9—heater; 10—thermocouple; 11—sample holder; 12—sample under study; 13—CMOS camera.

Fig. 2.
Fig. 2.

Typical normalized correlation functions of speckle intensity fluctuations at the initial stage of viscoelastic relaxation. Dashed line corresponds to 1/e level. Samples: paper layers; 1—T=298.16°K; 2—T=300.66°K; 3—T=303.66°K.

Fig. 3.
Fig. 3.

Values of the correlation time of speckle intensity fluctuations at the initial stage of viscoelastic relaxation against the temperature of the system. 1—Teflon samples; 2—cellulose (paper) samples.

Fig. 4.
Fig. 4.

Evolution of the normalized power of speckle intensity fluctuations in the course of viscoelastic relaxation of the porous matrices. Dashed line corresponds to 1/e level. Samples: Teflon layers. The notations of the graphs are the same as in Fig. 3.

Fig. 5.
Fig. 5.

Values of total relaxation time against the temperature of the system. 1—the paper samples; 2—the Teflon samples. Error bars correspond to the confidence level of 0.9. Inset: the dependence of the fluid bulk modulus on the temperature (recovered on the base of the pressure-density data obtained with the use of Ref. [36].

Fig. 6.
Fig. 6.

Schematic presentation for the estimation of the averaged squared displacement of scattering sites Δr¯2(τ).

Fig. 7.
Fig. 7.

Theoretical dependencies of the dimensionless parameter {ε˙τ}1/e on the mean scattering free path and the scattering anisotropy parameter for transilluminated nonabsorbing layers with a thickness of 100 μm. Open circles and squares correspond to the optical properties of examined paper (squares) and Teflon layers (circles). Error bars are related to measurement errors in the course of evaluation of l* and g and correspond to the confidence level of 0.9.

Tables (1)

Tables Icon

Table 1. Estimates of the Deformation Rate at the Initial Stage of Relaxation for Temperatures (a) Far Enough from and (b) in the Vicinity of the Critical Point

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

g2(τ)=g2(k·Δt)=1Mm=1M{n=n1n=n1+Nk(In+kmIm)(InmIm)n=n1n=n1+N(InmIm)2}.
Σ(t)=Σ(n·Δt)=1Mm=1M{k=Kk=K(I˜n+km)2k=0k=2K+1(I˜km)2},
g1(τ,si)=E(t,si)E*(t+τ)/|E(t,si)|2,
g1(τ,si)exp(k2Δr¯2(τ)si3l*),
g1(τ)g1(τ,si)Pi,
g1(τ)0exp(k2Δr¯2(τ)s3l*)ρ(s)ds.
Δr¯2(τ)2(K˜L2/l*)0K˜L2/2l*{ε˙l(ξ)τx(ξ)}2dξ2(ε˙τ)2(K˜L2/l*)0K˜L2/2l*{x(ξ)}2dξ,
Δr¯2(τ)(ε˙τ)2(K˜L22l*)201{x˜(ξ˜)}2dξ˜=(ε˙τ)2(K˜L22l*)2,
g2(τ)=|g1(τ)|2.
g2(τ)|0exp(k2(ε˙τ)2K˜2L4s12(l*)3)ρ(s)ds|2.
{ρd(x,t)t+{ρd(x,t)v(x,t)}x=0,v(x,t)+K˜ηp(x,t)x=0,
ρ˜d(ξ,η)η=ξ{ρ˜d(ξ,η)ρ˜d(ξ,η)ξ},
{1<ξ<1;η0,ρ˜d(1,η)η>0=ρ˜d(1,η)η>0=1Δ,ρ˜d(ξ,0)=1.
Ψ(t)=exp[(t/τVE)b],
ε0ε˜p[(1bλ)Kp1Ks],
ε0εp[φφKp+KL1Ks]pφ1φKp+KL.

Metrics