Abstract

We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of Rb87 atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8pT/Hz in a parallel B field.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Thienel, R. R. Harman, I. Y. Bar-Itzhack, and M. Lambertson, “Results of the magnetometer navigation (MAGNAV) inflight experiment,” in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August, 2004, pp. 16–19.
  2. C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
    [CrossRef]
  3. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Wiley, 2011).
  4. T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
    [CrossRef]
  5. S. Bonnet and R. Héliot, “A magnetometer-based approach for studying human movements,” IEEE Trans. Biomed. Eng. 54, 1353–1355 (2007).
    [CrossRef]
  6. T. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomed. Opt. Express 3, 981–990 (2012).
    [CrossRef]
  7. D. Yu, S. Ruangchaithaweesuk, L. Yao, and S. Xu, “Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer,” J. Nanopart. Res. 14, 1–9 (2012).
  8. J. Lenz and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sens. J. 6, 631–649 (2006).
    [CrossRef]
  9. D. Budker and D. F. J. Kimball, Optical Magnetometry (Cambridge University, 2013).
  10. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento Soc. Ital. Fis. B 36, 5–20 (1976).
    [CrossRef]
  11. E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
    [CrossRef]
  12. C. Reigber, H. Lühr, and P. Schwintzer, “CHAMP mission status,” Adv. Space Res. 30, 129–134 (2002).
    [CrossRef]
  13. C. Zhang, “In the past, now, the future of satellite magnetic survey,” Geophys. Geochem. Explor. 27, 329–332 (2003).
  14. M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27, 1472–1474 (2002).
    [CrossRef]
  15. I. Kominis, T. Kornack, J. Allred, and M. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
    [CrossRef]
  16. E. A. Alipieva, S. V. Gateva, and E. T. Taskova, “Coherent population trapping resonance on degenerate two-level system for magnetic field measurement,” Proc. SPIE 5449, 336–341 (2004).
    [CrossRef]
  17. J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.
  18. S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
    [CrossRef]
  19. D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
    [CrossRef]
  20. M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).
  21. B. Chéron, H. Gilles, and J. Hamel, “Spatial frequency isotropy of an optically pumped 4He magnetometer,” Eur. Phys. J. Appl. Phys. 13, 143–145 (2001).
    [CrossRef]
  22. C. Guttin, J. Leger, and F. Stoeckel, “An isotropic earth field scalar magnetometer using optically pumped helium 4,” J. Phys. IV 04, C4-655–C4-659 (1994).
    [CrossRef]
  23. M. O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
    [CrossRef]
  24. M. Fleischhauer and M. O. Scully, “Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence,” Phys. Rev. A 49, 1973–1986 (1994).
    [CrossRef]
  25. A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, and R. Wynands, “Experimental realization of coherent dark-state magnetometers,” Europhys. Lett. 44, 31 (1998).
    [CrossRef]
  26. Y. V. Vladimirova and V. N. Zadkov, “Frequency modulation spectroscopy of coherent dark resonances of multi-level atoms in a magnetic field,” Moscow Univ. Phys. Bull. 65, 493–500 (2010).
    [CrossRef]
  27. A. Post, Y.-Y. Jau, N. Kuzma, and W. Happer, “Amplitude- versus frequency-modulated pumping light for coherent population trapping resonances at high buffer-gas pressure,” Phys. Rev. A 72, 033417 (2005).
    [CrossRef]
  28. M. Rosenbluh, V. Shah, S. Knappe, and J. Kitching, “Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields,” Opt. Express 14, 6588–6594 (2006).
    [CrossRef]
  29. A. Ben-Kish and M. Romalis, “Dead-zone-free atomic magnetometry with simultaneous excitation of orientation and alignment resonances,” Phys. Rev. Lett. 105, 193601 (2010).
    [CrossRef]
  30. E. A. Alipieva, S. V. Gateva, E. T. Taskova, V. A. Sarova, and S. Cartaleva, “Magnetic field influence on coherent resonance in a degenerate two-level system,” Proc. SPIE 5226, 134–138 (2003).
    [CrossRef]
  31. J. Belfi, G. Bevilacqua, V. Biancalana, Y. Dancheva, and L. Moi, “All optical sensor for automated magnetometry based on coherent population trapping,” J. Opt. Soc. Am. B 24, 1482–1489 (2007).
    [CrossRef]
  32. G.-B. Liu, R.-C. Du, C.-Y. Liu, and S.-H. Gu, “CPT magnetometer with atomic energy level modulation,” Chin. Phys. Lett. 25, 472 (2008).
    [CrossRef]
  33. J.-J. Song, S. Du, and B. A. Foreman, “Atomic magnetometer based on a double-dark-state system,” Phys. Lett. A 375, 3296–3299 (2011).
    [CrossRef]
  34. S. Pradhan, R. Behera, and A. Das, “Polarization rotation under two-photon Raman resonance for magnetometry,” Appl. Phys. Lett. 100, 173502 (2012).
    [CrossRef]
  35. E. Sahin, R. Hamid, M. Celik, C. Birlikseven, G. Ozen, and A. Izmailov, “CPT resonances in two frequency pumping and probe beam configuration,” in 2012 European Frequency and Time Forum (EFTF) (IEEE, 2012), pp. 323–326.
  36. A. N. R. Wynands, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68, 1–25 (1999).
    [CrossRef]
  37. P. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
    [CrossRef]
  38. C. Affolderbach, W. Kemp, S. Knappe, A. Nagel, M. Stahler, and R. Wynands, “Magnetometer and frequency standard based on coherently prepared thermal alkali atomic vapors,” in Quantum Electronics and Laser Science Conference (QELS), Technical Digest (IEEE, 2000), pp. 104–105.
  39. J. Preusser, S. Knappe, J. Kitching, and V. Gerginov, “A microfabricated photonic magnetometer,” in IEEE International Frequency Control Symposium, 2009, Joint with the 22nd European Frequency and Time Forum (IEEE, 2009), pp. 1180–1182.
  40. C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
    [CrossRef]
  41. L. Moi and S. Cartaleva, “Sensitive magnetometers based on dark states,” Europhys. News 43, 24–27 (2012).
    [CrossRef]
  42. C. Ironside, K. Seunarine, G. Tandoi, and A. Luiten, “Prospects for atomic magnetometers employing hollow core optical fibre,” Proc. SPIE 8414, 84140V (1899).
    [CrossRef]
  43. M. Klein, M. Hohensee, D. Phillips, and R. Walsworth, “Electromagnetically induced transparency in paraffin-coated vapor cells,” Phys. Rev. A 83, 013826 (2011).
    [CrossRef]
  44. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613–619 (2002).
    [CrossRef]

2013 (1)

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[CrossRef]

2012 (4)

D. Yu, S. Ruangchaithaweesuk, L. Yao, and S. Xu, “Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer,” J. Nanopart. Res. 14, 1–9 (2012).

S. Pradhan, R. Behera, and A. Das, “Polarization rotation under two-photon Raman resonance for magnetometry,” Appl. Phys. Lett. 100, 173502 (2012).
[CrossRef]

L. Moi and S. Cartaleva, “Sensitive magnetometers based on dark states,” Europhys. News 43, 24–27 (2012).
[CrossRef]

T. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomed. Opt. Express 3, 981–990 (2012).
[CrossRef]

2011 (2)

M. Klein, M. Hohensee, D. Phillips, and R. Walsworth, “Electromagnetically induced transparency in paraffin-coated vapor cells,” Phys. Rev. A 83, 013826 (2011).
[CrossRef]

J.-J. Song, S. Du, and B. A. Foreman, “Atomic magnetometer based on a double-dark-state system,” Phys. Lett. A 375, 3296–3299 (2011).
[CrossRef]

2010 (2)

A. Ben-Kish and M. Romalis, “Dead-zone-free atomic magnetometry with simultaneous excitation of orientation and alignment resonances,” Phys. Rev. Lett. 105, 193601 (2010).
[CrossRef]

Y. V. Vladimirova and V. N. Zadkov, “Frequency modulation spectroscopy of coherent dark resonances of multi-level atoms in a magnetic field,” Moscow Univ. Phys. Bull. 65, 493–500 (2010).
[CrossRef]

2008 (1)

G.-B. Liu, R.-C. Du, C.-Y. Liu, and S.-H. Gu, “CPT magnetometer with atomic energy level modulation,” Chin. Phys. Lett. 25, 472 (2008).
[CrossRef]

2007 (3)

S. Bonnet and R. Héliot, “A magnetometer-based approach for studying human movements,” IEEE Trans. Biomed. Eng. 54, 1353–1355 (2007).
[CrossRef]

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

J. Belfi, G. Bevilacqua, V. Biancalana, Y. Dancheva, and L. Moi, “All optical sensor for automated magnetometry based on coherent population trapping,” J. Opt. Soc. Am. B 24, 1482–1489 (2007).
[CrossRef]

2006 (2)

2005 (3)

A. Post, Y.-Y. Jau, N. Kuzma, and W. Happer, “Amplitude- versus frequency-modulated pumping light for coherent population trapping resonances at high buffer-gas pressure,” Phys. Rev. A 72, 033417 (2005).
[CrossRef]

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

2004 (2)

E. A. Alipieva, S. V. Gateva, and E. T. Taskova, “Coherent population trapping resonance on degenerate two-level system for magnetic field measurement,” Proc. SPIE 5449, 336–341 (2004).
[CrossRef]

P. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

2003 (3)

E. A. Alipieva, S. V. Gateva, E. T. Taskova, V. A. Sarova, and S. Cartaleva, “Magnetic field influence on coherent resonance in a degenerate two-level system,” Proc. SPIE 5226, 134–138 (2003).
[CrossRef]

C. Zhang, “In the past, now, the future of satellite magnetic survey,” Geophys. Geochem. Explor. 27, 329–332 (2003).

I. Kominis, T. Kornack, J. Allred, and M. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

2002 (4)

C. Reigber, H. Lühr, and P. Schwintzer, “CHAMP mission status,” Adv. Space Res. 30, 129–134 (2002).
[CrossRef]

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27, 1472–1474 (2002).
[CrossRef]

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613–619 (2002).
[CrossRef]

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

2001 (2)

T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
[CrossRef]

B. Chéron, H. Gilles, and J. Hamel, “Spatial frequency isotropy of an optically pumped 4He magnetometer,” Eur. Phys. J. Appl. Phys. 13, 143–145 (2001).
[CrossRef]

1999 (2)

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

A. N. R. Wynands, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68, 1–25 (1999).
[CrossRef]

1998 (1)

A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, and R. Wynands, “Experimental realization of coherent dark-state magnetometers,” Europhys. Lett. 44, 31 (1998).
[CrossRef]

1994 (2)

C. Guttin, J. Leger, and F. Stoeckel, “An isotropic earth field scalar magnetometer using optically pumped helium 4,” J. Phys. IV 04, C4-655–C4-659 (1994).
[CrossRef]

M. Fleischhauer and M. O. Scully, “Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence,” Phys. Rev. A 49, 1973–1986 (1994).
[CrossRef]

1992 (1)

M. O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
[CrossRef]

1976 (1)

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento Soc. Ital. Fis. B 36, 5–20 (1976).
[CrossRef]

1899 (1)

C. Ironside, K. Seunarine, G. Tandoi, and A. Luiten, “Prospects for atomic magnetometers employing hollow core optical fibre,” Proc. SPIE 8414, 84140V (1899).
[CrossRef]

Affolderbach, C.

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

C. Affolderbach, W. Kemp, S. Knappe, A. Nagel, M. Stahler, and R. Wynands, “Magnetometer and frequency standard based on coherently prepared thermal alkali atomic vapors,” in Quantum Electronics and Laser Science Conference (QELS), Technical Digest (IEEE, 2000), pp. 104–105.

Alipieva, E.

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

Alipieva, E. A.

E. A. Alipieva, S. V. Gateva, and E. T. Taskova, “Coherent population trapping resonance on degenerate two-level system for magnetic field measurement,” Proc. SPIE 5449, 336–341 (2004).
[CrossRef]

E. A. Alipieva, S. V. Gateva, E. T. Taskova, V. A. Sarova, and S. Cartaleva, “Magnetic field influence on coherent resonance in a degenerate two-level system,” Proc. SPIE 5226, 134–138 (2003).
[CrossRef]

Allred, J.

I. Kominis, T. Kornack, J. Allred, and M. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

Alzetta, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento Soc. Ital. Fis. B 36, 5–20 (1976).
[CrossRef]

Ander, M.

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

Andreeva, C.

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

Avramov, L.

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

Bar-Itzhack, I. Y.

J. K. Thienel, R. R. Harman, I. Y. Bar-Itzhack, and M. Lambertson, “Results of the magnetometer navigation (MAGNAV) inflight experiment,” in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August, 2004, pp. 16–19.

Behera, R.

S. Pradhan, R. Behera, and A. Das, “Polarization rotation under two-photon Raman resonance for magnetometry,” Appl. Phys. Lett. 100, 173502 (2012).
[CrossRef]

Belfi, J.

Ben-Kish, A.

A. Ben-Kish and M. Romalis, “Dead-zone-free atomic magnetometry with simultaneous excitation of orientation and alignment resonances,” Phys. Rev. Lett. 105, 193601 (2010).
[CrossRef]

Bevilacqua, G.

Bevilaqua, G.

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

Biancalana, V.

J. Belfi, G. Bevilacqua, V. Biancalana, Y. Dancheva, and L. Moi, “All optical sensor for automated magnetometry based on coherent population trapping,” J. Opt. Soc. Am. B 24, 1482–1489 (2007).
[CrossRef]

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, and R. Wynands, “Experimental realization of coherent dark-state magnetometers,” Europhys. Lett. 44, 31 (1998).
[CrossRef]

Binks, R.

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

Birlikseven, C.

E. Sahin, R. Hamid, M. Celik, C. Birlikseven, G. Ozen, and A. Izmailov, “CPT resonances in two frequency pumping and probe beam configuration,” in 2012 European Frequency and Time Forum (EFTF) (IEEE, 2012), pp. 323–326.

Bonnet, S.

S. Bonnet and R. Héliot, “A magnetometer-based approach for studying human movements,” IEEE Trans. Biomed. Eng. 54, 1353–1355 (2007).
[CrossRef]

Bono, J. T.

T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
[CrossRef]

Borisova, E.

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

Brannon, A.

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

Breschi, E.

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

Budker, D.

D. Budker and D. F. J. Kimball, Optical Magnetometry (Cambridge University, 2013).

Cartaleva, S.

L. Moi and S. Cartaleva, “Sensitive magnetometers based on dark states,” Europhys. News 43, 24–27 (2012).
[CrossRef]

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

E. A. Alipieva, S. V. Gateva, E. T. Taskova, V. A. Sarova, and S. Cartaleva, “Magnetic field influence on coherent resonance in a degenerate two-level system,” Proc. SPIE 5226, 134–138 (2003).
[CrossRef]

Celik, M.

E. Sahin, R. Hamid, M. Celik, C. Birlikseven, G. Ozen, and A. Izmailov, “CPT resonances in two frequency pumping and probe beam configuration,” in 2012 European Frequency and Time Forum (EFTF) (IEEE, 2012), pp. 323–326.

Chéron, B.

B. Chéron, H. Gilles, and J. Hamel, “Spatial frequency isotropy of an optically pumped 4He magnetometer,” Eur. Phys. J. Appl. Phys. 13, 143–145 (2001).
[CrossRef]

Clem, T. R.

T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
[CrossRef]

Cullity, B. D.

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Wiley, 2011).

Dancheva, Y.

J. Belfi, G. Bevilacqua, V. Biancalana, Y. Dancheva, and L. Moi, “All optical sensor for automated magnetometry based on coherent population trapping,” J. Opt. Soc. Am. B 24, 1482–1489 (2007).
[CrossRef]

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

Das, A.

S. Pradhan, R. Behera, and A. Das, “Polarization rotation under two-photon Raman resonance for magnetometry,” Appl. Phys. Lett. 100, 173502 (2012).
[CrossRef]

Du, R.-C.

G.-B. Liu, R.-C. Du, C.-Y. Liu, and S.-H. Gu, “CPT magnetometer with atomic energy level modulation,” Chin. Phys. Lett. 25, 472 (2008).
[CrossRef]

Du, S.

J.-J. Song, S. Du, and B. A. Foreman, “Atomic magnetometer based on a double-dark-state system,” Phys. Lett. A 375, 3296–3299 (2011).
[CrossRef]

Dural, N.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[CrossRef]

Edelstein, S.

J. Lenz and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sens. J. 6, 631–649 (2006).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer and M. O. Scully, “Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence,” Phys. Rev. A 49, 1973–1986 (1994).
[CrossRef]

M. O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
[CrossRef]

Foley, C.

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

Foreman, B. A.

J.-J. Song, S. Du, and B. A. Foreman, “Atomic magnetometer based on a double-dark-state system,” Phys. Lett. A 375, 3296–3299 (2011).
[CrossRef]

Gateva, S.

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

Gateva, S. V.

E. A. Alipieva, S. V. Gateva, and E. T. Taskova, “Coherent population trapping resonance on degenerate two-level system for magnetic field measurement,” Proc. SPIE 5449, 336–341 (2004).
[CrossRef]

E. A. Alipieva, S. V. Gateva, E. T. Taskova, V. A. Sarova, and S. Cartaleva, “Magnetic field influence on coherent resonance in a degenerate two-level system,” Proc. SPIE 5226, 134–138 (2003).
[CrossRef]

Gawlik, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613–619 (2002).
[CrossRef]

Gerginov, V.

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

J. Preusser, S. Knappe, J. Kitching, and V. Gerginov, “A microfabricated photonic magnetometer,” in IEEE International Frequency Control Symposium, 2009, Joint with the 22nd European Frequency and Time Forum (IEEE, 2009), pp. 1180–1182.

Gilles, H.

B. Chéron, H. Gilles, and J. Hamel, “Spatial frequency isotropy of an optically pumped 4He magnetometer,” Eur. Phys. J. Appl. Phys. 13, 143–145 (2001).
[CrossRef]

Gozzini, A.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento Soc. Ital. Fis. B 36, 5–20 (1976).
[CrossRef]

Graf, L.

A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, and R. Wynands, “Experimental realization of coherent dark-state magnetometers,” Europhys. Lett. 44, 31 (1998).
[CrossRef]

Graham, C. D.

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Wiley, 2011).

Grauch, V.

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

Griffith, C.

J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.

Gu, S.-H.

G.-B. Liu, R.-C. Du, C.-Y. Liu, and S.-H. Gu, “CPT magnetometer with atomic energy level modulation,” Chin. Phys. Lett. 25, 472 (2008).
[CrossRef]

Guttin, C.

C. Guttin, J. Leger, and F. Stoeckel, “An isotropic earth field scalar magnetometer using optically pumped helium 4,” J. Phys. IV 04, C4-655–C4-659 (1994).
[CrossRef]

Hamel, J.

B. Chéron, H. Gilles, and J. Hamel, “Spatial frequency isotropy of an optically pumped 4He magnetometer,” Eur. Phys. J. Appl. Phys. 13, 143–145 (2001).
[CrossRef]

Hamid, R.

E. Sahin, R. Hamid, M. Celik, C. Birlikseven, G. Ozen, and A. Izmailov, “CPT resonances in two frequency pumping and probe beam configuration,” in 2012 European Frequency and Time Forum (EFTF) (IEEE, 2012), pp. 323–326.

Hansen, R.

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

Happer, W.

A. Post, Y.-Y. Jau, N. Kuzma, and W. Happer, “Amplitude- versus frequency-modulated pumping light for coherent population trapping resonances at high buffer-gas pressure,” Phys. Rev. A 72, 033417 (2005).
[CrossRef]

Harman, R. R.

J. K. Thienel, R. R. Harman, I. Y. Bar-Itzhack, and M. Lambertson, “Results of the magnetometer navigation (MAGNAV) inflight experiment,” in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August, 2004, pp. 16–19.

Héliot, R.

S. Bonnet and R. Héliot, “A magnetometer-based approach for studying human movements,” IEEE Trans. Biomed. Eng. 54, 1353–1355 (2007).
[CrossRef]

Hohensee, M.

M. Klein, M. Hohensee, D. Phillips, and R. Walsworth, “Electromagnetically induced transparency in paraffin-coated vapor cells,” Phys. Rev. A 83, 013826 (2011).
[CrossRef]

Hollberg, L.

P. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27, 1472–1474 (2002).
[CrossRef]

Ironside, C.

C. Ironside, K. Seunarine, G. Tandoi, and A. Luiten, “Prospects for atomic magnetometers employing hollow core optical fibre,” Proc. SPIE 8414, 84140V (1899).
[CrossRef]

Izmailov, A.

E. Sahin, R. Hamid, M. Celik, C. Birlikseven, G. Ozen, and A. Izmailov, “CPT resonances in two frequency pumping and probe beam configuration,” in 2012 European Frequency and Time Forum (EFTF) (IEEE, 2012), pp. 323–326.

Jau, Y.-Y.

A. Post, Y.-Y. Jau, N. Kuzma, and W. Happer, “Amplitude- versus frequency-modulated pumping light for coherent population trapping resonances at high buffer-gas pressure,” Phys. Rev. A 72, 033417 (2005).
[CrossRef]

Jimenez, R.

J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.

Katzaros, A.

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

Keefe, G. A.

T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
[CrossRef]

Kemp, W.

C. Affolderbach, W. Kemp, S. Knappe, A. Nagel, M. Stahler, and R. Wynands, “Magnetometer and frequency standard based on coherently prepared thermal alkali atomic vapors,” in Quantum Electronics and Laser Science Conference (QELS), Technical Digest (IEEE, 2000), pp. 104–105.

Kimball, D. F. J.

D. Budker and D. F. J. Kimball, Optical Magnetometry (Cambridge University, 2013).

Kitching, J.

T. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomed. Opt. Express 3, 981–990 (2012).
[CrossRef]

M. Rosenbluh, V. Shah, S. Knappe, and J. Kitching, “Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields,” Opt. Express 14, 6588–6594 (2006).
[CrossRef]

P. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27, 1472–1474 (2002).
[CrossRef]

J. Preusser, S. Knappe, J. Kitching, and V. Gerginov, “A microfabricated photonic magnetometer,” in IEEE International Frequency Control Symposium, 2009, Joint with the 22nd European Frequency and Time Forum (IEEE, 2009), pp. 1180–1182.

J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.

Klein, M.

M. Klein, M. Hohensee, D. Phillips, and R. Walsworth, “Electromagnetically induced transparency in paraffin-coated vapor cells,” Phys. Rev. A 83, 013826 (2011).
[CrossRef]

Knappe, S.

T. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomed. Opt. Express 3, 981–990 (2012).
[CrossRef]

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

M. Rosenbluh, V. Shah, S. Knappe, and J. Kitching, “Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields,” Opt. Express 14, 6588–6594 (2006).
[CrossRef]

P. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27, 1472–1474 (2002).
[CrossRef]

J. Preusser, S. Knappe, J. Kitching, and V. Gerginov, “A microfabricated photonic magnetometer,” in IEEE International Frequency Control Symposium, 2009, Joint with the 22nd European Frequency and Time Forum (IEEE, 2009), pp. 1180–1182.

J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.

C. Affolderbach, W. Kemp, S. Knappe, A. Nagel, M. Stahler, and R. Wynands, “Magnetometer and frequency standard based on coherently prepared thermal alkali atomic vapors,” in Quantum Electronics and Laser Science Conference (QELS), Technical Digest (IEEE, 2000), pp. 104–105.

Koch, R. H.

T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
[CrossRef]

Kominis, I.

I. Kominis, T. Kornack, J. Allred, and M. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

Kornack, T.

I. Kominis, T. Kornack, J. Allred, and M. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

Kuzma, N.

A. Post, Y.-Y. Jau, N. Kuzma, and W. Happer, “Amplitude- versus frequency-modulated pumping light for coherent population trapping resonances at high buffer-gas pressure,” Phys. Rev. A 72, 033417 (2005).
[CrossRef]

LaFehr, T.

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

Lam, S.

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

Lambertson, M.

J. K. Thienel, R. R. Harman, I. Y. Bar-Itzhack, and M. Lambertson, “Results of the magnetometer navigation (MAGNAV) inflight experiment,” in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August, 2004, pp. 16–19.

Leger, J.

C. Guttin, J. Leger, and F. Stoeckel, “An isotropic earth field scalar magnetometer using optically pumped helium 4,” J. Phys. IV 04, C4-655–C4-659 (1994).
[CrossRef]

Lenz, J.

J. Lenz and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sens. J. 6, 631–649 (2006).
[CrossRef]

Leslie, K.

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

Lewis, C.

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

Li, S.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[CrossRef]

Li, Y.

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

Liew, L.-A.

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

P. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.

Lindseth, B.

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

Liu, C.-Y.

G.-B. Liu, R.-C. Du, C.-Y. Liu, and S.-H. Gu, “CPT magnetometer with atomic energy level modulation,” Chin. Phys. Lett. 25, 472 (2008).
[CrossRef]

Liu, G.-B.

G.-B. Liu, R.-C. Du, C.-Y. Liu, and S.-H. Gu, “CPT magnetometer with atomic energy level modulation,” Chin. Phys. Lett. 25, 472 (2008).
[CrossRef]

Lühr, H.

C. Reigber, H. Lühr, and P. Schwintzer, “CHAMP mission status,” Adv. Space Res. 30, 129–134 (2002).
[CrossRef]

Luiten, A.

C. Ironside, K. Seunarine, G. Tandoi, and A. Luiten, “Prospects for atomic magnetometers employing hollow core optical fibre,” Proc. SPIE 8414, 84140V (1899).
[CrossRef]

Mariotti, E.

A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, and R. Wynands, “Experimental realization of coherent dark-state magnetometers,” Europhys. Lett. 44, 31 (1998).
[CrossRef]

Meschede, D.

A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, and R. Wynands, “Experimental realization of coherent dark-state magnetometers,” Europhys. Lett. 44, 31 (1998).
[CrossRef]

Mhaskar, R.

Mohling, R. A.

T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
[CrossRef]

Moi, L.

L. Moi and S. Cartaleva, “Sensitive magnetometers based on dark states,” Europhys. News 43, 24–27 (2012).
[CrossRef]

J. Belfi, G. Bevilacqua, V. Biancalana, Y. Dancheva, and L. Moi, “All optical sensor for automated magnetometry based on coherent population trapping,” J. Opt. Soc. Am. B 24, 1482–1489 (2007).
[CrossRef]

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento Soc. Ital. Fis. B 36, 5–20 (1976).
[CrossRef]

Moreland, J.

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

P. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.

Murray, W.

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

Nabighian, M.

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

Nagel, A.

A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, and R. Wynands, “Experimental realization of coherent dark-state magnetometers,” Europhys. Lett. 44, 31 (1998).
[CrossRef]

C. Affolderbach, W. Kemp, S. Knappe, A. Nagel, M. Stahler, and R. Wynands, “Magnetometer and frequency standard based on coherently prepared thermal alkali atomic vapors,” in Quantum Electronics and Laser Science Conference (QELS), Technical Digest (IEEE, 2000), pp. 104–105.

Naumov, A.

A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, and R. Wynands, “Experimental realization of coherent dark-state magnetometers,” Europhys. Lett. 44, 31 (1998).
[CrossRef]

Orriols, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento Soc. Ital. Fis. B 36, 5–20 (1976).
[CrossRef]

Overway, D. J.

T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
[CrossRef]

Ozen, G.

E. Sahin, R. Hamid, M. Celik, C. Birlikseven, G. Ozen, and A. Izmailov, “CPT resonances in two frequency pumping and probe beam configuration,” in 2012 European Frequency and Time Forum (EFTF) (IEEE, 2012), pp. 323–326.

Pearson, W.

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

Peirce, J.

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

Phillips, D.

M. Klein, M. Hohensee, D. Phillips, and R. Walsworth, “Electromagnetically induced transparency in paraffin-coated vapor cells,” Phys. Rev. A 83, 013826 (2011).
[CrossRef]

Phillips, J.

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

Popovic, Z.

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

Post, A.

A. Post, Y.-Y. Jau, N. Kuzma, and W. Happer, “Amplitude- versus frequency-modulated pumping light for coherent population trapping resonances at high buffer-gas pressure,” Phys. Rev. A 72, 033417 (2005).
[CrossRef]

Pradhan, S.

S. Pradhan, R. Behera, and A. Das, “Polarization rotation under two-photon Raman resonance for magnetometry,” Appl. Phys. Lett. 100, 173502 (2012).
[CrossRef]

Preusser, J.

T. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomed. Opt. Express 3, 981–990 (2012).
[CrossRef]

J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.

J. Preusser, S. Knappe, J. Kitching, and V. Gerginov, “A microfabricated photonic magnetometer,” in IEEE International Frequency Control Symposium, 2009, Joint with the 22nd European Frequency and Time Forum (IEEE, 2009), pp. 1180–1182.

Purpura, J. W.

T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
[CrossRef]

Reigber, C.

C. Reigber, H. Lühr, and P. Schwintzer, “CHAMP mission status,” Adv. Space Res. 30, 129–134 (2002).
[CrossRef]

Robinson, H.

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

Romalis, M.

A. Ben-Kish and M. Romalis, “Dead-zone-free atomic magnetometry with simultaneous excitation of orientation and alignment resonances,” Phys. Rev. Lett. 105, 193601 (2010).
[CrossRef]

I. Kominis, T. Kornack, J. Allred, and M. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

Romalis, M. V.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[CrossRef]

Rosenbluh, M.

Rozen, J. R.

T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
[CrossRef]

Ruangchaithaweesuk, S.

D. Yu, S. Ruangchaithaweesuk, L. Yao, and S. Xu, “Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer,” J. Nanopart. Res. 14, 1–9 (2012).

Ruder, M.

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

Sahin, E.

E. Sahin, R. Hamid, M. Celik, C. Birlikseven, G. Ozen, and A. Izmailov, “CPT resonances in two frequency pumping and probe beam configuration,” in 2012 European Frequency and Time Forum (EFTF) (IEEE, 2012), pp. 323–326.

Sander, T.

Sankrithyan, B.

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

Sarova, V. A.

E. A. Alipieva, S. V. Gateva, E. T. Taskova, V. A. Sarova, and S. Cartaleva, “Magnetic field influence on coherent resonance in a degenerate two-level system,” Proc. SPIE 5226, 134–138 (2003).
[CrossRef]

Savvides, N.

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

Schwindt, P.

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.

Schwindt, P. D.

P. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

Schwintzer, P.

C. Reigber, H. Lühr, and P. Schwintzer, “CHAMP mission status,” Adv. Space Res. 30, 129–134 (2002).
[CrossRef]

Scully, M. O.

M. Fleischhauer and M. O. Scully, “Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence,” Phys. Rev. A 49, 1973–1986 (1994).
[CrossRef]

M. O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
[CrossRef]

Seunarine, K.

C. Ironside, K. Seunarine, G. Tandoi, and A. Luiten, “Prospects for atomic magnetometers employing hollow core optical fibre,” Proc. SPIE 8414, 84140V (1899).
[CrossRef]

Shah, V.

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

M. Rosenbluh, V. Shah, S. Knappe, and J. Kitching, “Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields,” Opt. Express 14, 6588–6594 (2006).
[CrossRef]

P. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.

Sheng, D.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[CrossRef]

Sloggett, G.

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

Song, J.-J.

J.-J. Song, S. Du, and B. A. Foreman, “Atomic magnetometer based on a double-dark-state system,” Phys. Lett. A 375, 3296–3299 (2011).
[CrossRef]

Stahler, M.

C. Affolderbach, W. Kemp, S. Knappe, A. Nagel, M. Stahler, and R. Wynands, “Magnetometer and frequency standard based on coherently prepared thermal alkali atomic vapors,” in Quantum Electronics and Laser Science Conference (QELS), Technical Digest (IEEE, 2000), pp. 104–105.

Stähler, M.

Stoeckel, F.

C. Guttin, J. Leger, and F. Stoeckel, “An isotropic earth field scalar magnetometer using optically pumped helium 4,” J. Phys. IV 04, C4-655–C4-659 (1994).
[CrossRef]

Taichenachev, A.

Tandoi, G.

C. Ironside, K. Seunarine, G. Tandoi, and A. Luiten, “Prospects for atomic magnetometers employing hollow core optical fibre,” Proc. SPIE 8414, 84140V (1899).
[CrossRef]

Taskova, E. T.

E. A. Alipieva, S. V. Gateva, and E. T. Taskova, “Coherent population trapping resonance on degenerate two-level system for magnetic field measurement,” Proc. SPIE 5449, 336–341 (2004).
[CrossRef]

E. A. Alipieva, S. V. Gateva, E. T. Taskova, V. A. Sarova, and S. Cartaleva, “Magnetic field influence on coherent resonance in a degenerate two-level system,” Proc. SPIE 5226, 134–138 (2003).
[CrossRef]

Thienel, J. K.

J. K. Thienel, R. R. Harman, I. Y. Bar-Itzhack, and M. Lambertson, “Results of the magnetometer navigation (MAGNAV) inflight experiment,” in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August, 2004, pp. 16–19.

Trahms, L.

Vladimirova, Y. V.

Y. V. Vladimirova and V. N. Zadkov, “Frequency modulation spectroscopy of coherent dark resonances of multi-level atoms in a magnetic field,” Moscow Univ. Phys. Bull. 65, 493–500 (2010).
[CrossRef]

Walsworth, R.

M. Klein, M. Hohensee, D. Phillips, and R. Walsworth, “Electromagnetically induced transparency in paraffin-coated vapor cells,” Phys. Rev. A 83, 013826 (2011).
[CrossRef]

Wasik, G.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613–619 (2002).
[CrossRef]

Willen, S.

T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
[CrossRef]

Wynands, A. N. R.

A. N. R. Wynands, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68, 1–25 (1999).
[CrossRef]

Wynands, R.

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27, 1472–1474 (2002).
[CrossRef]

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, and R. Wynands, “Experimental realization of coherent dark-state magnetometers,” Europhys. Lett. 44, 31 (1998).
[CrossRef]

C. Affolderbach, W. Kemp, S. Knappe, A. Nagel, M. Stahler, and R. Wynands, “Magnetometer and frequency standard based on coherently prepared thermal alkali atomic vapors,” in Quantum Electronics and Laser Science Conference (QELS), Technical Digest (IEEE, 2000), pp. 104–105.

Xu, S.

D. Yu, S. Ruangchaithaweesuk, L. Yao, and S. Xu, “Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer,” J. Nanopart. Res. 14, 1–9 (2012).

Yao, L.

D. Yu, S. Ruangchaithaweesuk, L. Yao, and S. Xu, “Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer,” J. Nanopart. Res. 14, 1–9 (2012).

Yu, D.

D. Yu, S. Ruangchaithaweesuk, L. Yao, and S. Xu, “Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer,” J. Nanopart. Res. 14, 1–9 (2012).

Yudin, V.

Zachorowski, J.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613–619 (2002).
[CrossRef]

Zadkov, V. N.

Y. V. Vladimirova and V. N. Zadkov, “Frequency modulation spectroscopy of coherent dark resonances of multi-level atoms in a magnetic field,” Moscow Univ. Phys. Bull. 65, 493–500 (2010).
[CrossRef]

Zawadzki, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613–619 (2002).
[CrossRef]

Zhang, C.

C. Zhang, “In the past, now, the future of satellite magnetic survey,” Geophys. Geochem. Explor. 27, 329–332 (2003).

Adv. Space Res. (1)

C. Reigber, H. Lühr, and P. Schwintzer, “CHAMP mission status,” Adv. Space Res. 30, 129–134 (2002).
[CrossRef]

Appl. Phys. B (3)

A. N. R. Wynands, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68, 1–25 (1999).
[CrossRef]

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613–619 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

P. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004).
[CrossRef]

S. Pradhan, R. Behera, and A. Das, “Polarization rotation under two-photon Raman resonance for magnetometry,” Appl. Phys. Lett. 100, 173502 (2012).
[CrossRef]

Biomed. Opt. Express (1)

Chin. Phys. Lett. (1)

G.-B. Liu, R.-C. Du, C.-Y. Liu, and S.-H. Gu, “CPT magnetometer with atomic energy level modulation,” Chin. Phys. Lett. 25, 472 (2008).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

B. Chéron, H. Gilles, and J. Hamel, “Spatial frequency isotropy of an optically pumped 4He magnetometer,” Eur. Phys. J. Appl. Phys. 13, 143–145 (2001).
[CrossRef]

Europhys. Lett. (1)

A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, and R. Wynands, “Experimental realization of coherent dark-state magnetometers,” Europhys. Lett. 44, 31 (1998).
[CrossRef]

Europhys. News (1)

L. Moi and S. Cartaleva, “Sensitive magnetometers based on dark states,” Europhys. News 43, 24–27 (2012).
[CrossRef]

Geophys. Geochem. Explor. (1)

C. Zhang, “In the past, now, the future of satellite magnetic survey,” Geophys. Geochem. Explor. 27, 329–332 (2003).

Geophysics (1)

M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).

IEEE Sens. J. (1)

J. Lenz and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sens. J. 6, 631–649 (2006).
[CrossRef]

IEEE Trans. Appl. Supercond. (2)

C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999).
[CrossRef]

T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

S. Bonnet and R. Héliot, “A magnetometer-based approach for studying human movements,” IEEE Trans. Biomed. Eng. 54, 1353–1355 (2007).
[CrossRef]

J. Nanopart. Res. (1)

D. Yu, S. Ruangchaithaweesuk, L. Yao, and S. Xu, “Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer,” J. Nanopart. Res. 14, 1–9 (2012).

J. Opt. Soc. Am. B (1)

J. Phys. IV (1)

C. Guttin, J. Leger, and F. Stoeckel, “An isotropic earth field scalar magnetometer using optically pumped helium 4,” J. Phys. IV 04, C4-655–C4-659 (1994).
[CrossRef]

Moscow Univ. Phys. Bull. (1)

Y. V. Vladimirova and V. N. Zadkov, “Frequency modulation spectroscopy of coherent dark resonances of multi-level atoms in a magnetic field,” Moscow Univ. Phys. Bull. 65, 493–500 (2010).
[CrossRef]

Nature (1)

I. Kominis, T. Kornack, J. Allred, and M. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

Nuovo Cimento Soc. Ital. Fis. B (1)

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento Soc. Ital. Fis. B 36, 5–20 (1976).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (1)

J.-J. Song, S. Du, and B. A. Foreman, “Atomic magnetometer based on a double-dark-state system,” Phys. Lett. A 375, 3296–3299 (2011).
[CrossRef]

Phys. Rev. A (3)

M. Fleischhauer and M. O. Scully, “Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence,” Phys. Rev. A 49, 1973–1986 (1994).
[CrossRef]

M. Klein, M. Hohensee, D. Phillips, and R. Walsworth, “Electromagnetically induced transparency in paraffin-coated vapor cells,” Phys. Rev. A 83, 013826 (2011).
[CrossRef]

A. Post, Y.-Y. Jau, N. Kuzma, and W. Happer, “Amplitude- versus frequency-modulated pumping light for coherent population trapping resonances at high buffer-gas pressure,” Phys. Rev. A 72, 033417 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

M. O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
[CrossRef]

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[CrossRef]

A. Ben-Kish and M. Romalis, “Dead-zone-free atomic magnetometry with simultaneous excitation of orientation and alignment resonances,” Phys. Rev. Lett. 105, 193601 (2010).
[CrossRef]

Proc. SPIE (5)

E. A. Alipieva, S. V. Gateva, E. T. Taskova, V. A. Sarova, and S. Cartaleva, “Magnetic field influence on coherent resonance in a degenerate two-level system,” Proc. SPIE 5226, 134–138 (2003).
[CrossRef]

S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007).
[CrossRef]

E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005).
[CrossRef]

E. A. Alipieva, S. V. Gateva, and E. T. Taskova, “Coherent population trapping resonance on degenerate two-level system for magnetic field measurement,” Proc. SPIE 5449, 336–341 (2004).
[CrossRef]

C. Ironside, K. Seunarine, G. Tandoi, and A. Luiten, “Prospects for atomic magnetometers employing hollow core optical fibre,” Proc. SPIE 8414, 84140V (1899).
[CrossRef]

Other (7)

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Wiley, 2011).

J. K. Thienel, R. R. Harman, I. Y. Bar-Itzhack, and M. Lambertson, “Results of the magnetometer navigation (MAGNAV) inflight experiment,” in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August, 2004, pp. 16–19.

E. Sahin, R. Hamid, M. Celik, C. Birlikseven, G. Ozen, and A. Izmailov, “CPT resonances in two frequency pumping and probe beam configuration,” in 2012 European Frequency and Time Forum (EFTF) (IEEE, 2012), pp. 323–326.

C. Affolderbach, W. Kemp, S. Knappe, A. Nagel, M. Stahler, and R. Wynands, “Magnetometer and frequency standard based on coherently prepared thermal alkali atomic vapors,” in Quantum Electronics and Laser Science Conference (QELS), Technical Digest (IEEE, 2000), pp. 104–105.

J. Preusser, S. Knappe, J. Kitching, and V. Gerginov, “A microfabricated photonic magnetometer,” in IEEE International Frequency Control Symposium, 2009, Joint with the 22nd European Frequency and Time Forum (IEEE, 2009), pp. 1180–1182.

J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.

D. Budker and D. F. J. Kimball, Optical Magnetometry (Cambridge University, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Three-level Λ system. One light couples the |a and |b states with Rabi frequency Ω1; the other couples the |a and |c states with Rabi frequency Ω2. The coherence decay rate between the |b and |c states is γbc. (b) Rb87 hyperfine energy levels with Zeeman splits related to the D1 transition. The Zeeman shift of the CPT resonance is measured to indicate the magnetic flux intensity.

Fig. 2.
Fig. 2.

Setup of the magnetometer. The cell with the solenoid is placed in the magnetic shield and kept at room temperature. The probe beam is expanded to cover the whole cell, and a balanced detector is used to suppress the background noise. The output of the PI controller is converted to the magnetic field density, while a 0 V output corresponds to zero magnetic field intensity.

Fig. 3.
Fig. 3.

Detected CPT signal [the resonances shown in Fig. 1(b)] and the derivative signal of it at about zero magnetic field. The black curve is the observed CPT signal, and the red one is the derivative signal of the detected signal. The SNR of the CPT signal is more than 40, and the FWHM is about 515.6 Hz.

Fig. 4.
Fig. 4.

Magnetic field intensity measured by the CPT magnetometer and the fluxgate magnetometer. All the fluxgate data are obtained by averaging the data acquired on the contrary directions. The CPT data are the direct conversion of the output voltage of the PI controller.

Fig. 5.
Fig. 5.

Power spectral density of the output voltage converted to the unit of magnetic field intensity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

|D=[Ω2|bΩ1|c]/[Ω12+Ω22]1/2.
h(ν1ν2)=ΔE(MF)hν0+2MFγB,

Metrics