Abstract

In this study, we investigated the performance improvement of a localized surface plasmon resonance (LSPR) biosensor by incorporating a metal–dielectric–metal (MDM) stack structure and subwavelength metallic nanograting. The numerical results showed that the LSPR substrate with a MDM stack can provide not only a better sensitivity by more than five times but also a notably improved signal quality. While the gold nanogratings on a gold film inevitably lead to a broad and shallow reflectance curve, the presence of a MDM stack can prevent propagating surface plasmons from interference by locally enhanced fields excited at the gold nanogratings, finally resulting in a strong and deep absorption band at resonance. Therefore, the proposed LSPR structure could potentially open a new possibility of enhanced detection for monitoring biomolecular interactions of very low molecular weights.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef]
  2. N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011).
    [CrossRef]
  3. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
    [CrossRef]
  4. S. M. Jang, D. Kim, S. H. Choi, K. M. Byun, and S. J. Kim, “Enhancement of localized surface plasmon resonance detection by incorporating metal-dielectric double-layered subwavelength gratings,” Appl. Opt. 50, 2846–2854 (2011).
    [CrossRef]
  5. W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
    [CrossRef]
  6. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
    [CrossRef]
  7. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).
    [CrossRef]
  8. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
    [CrossRef]
  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  10. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  11. Z. Liu, K.-P. Chen, X. Ni, V. P. Drachev, V. M. Shalaev, and A. V. Kildishev, “Experimental verification of two-dimensional spatial harmonic analysis at oblique light incidence,” J. Opt. Soc. Am. B 27, 2465–2470 (2010).
    [CrossRef]
  12. L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184–1189 (1993).
    [CrossRef]
  13. S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors,” Appl. Spectrosc. 59, 661–667 (2005).
    [CrossRef]

2011 (2)

2010 (1)

2009 (1)

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

2008 (2)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

2005 (2)

2004 (2)

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

1993 (1)

1986 (1)

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Bartal, G.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

Byun, K. M.

Chang, G. L.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Chen, K.-P.

Chen, S.-J.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Chen, W. Y.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Choi, S. H.

Drachev, V. P.

Ekgasit, S.

Elhadj, S.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Gaylord, T. K.

Haggans, C. W.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Hsu, J. H.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Hu, W. P.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Huang, K.-T.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Jang, S. M.

Jung, W. K.

Kildishev, A. V.

Kim, D.

Kim, D. J.

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Kim, K.

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Kim, N.-H.

Kim, S. J.

Knoll, W.

Lai, K.-A.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Li, L.

Liu, Z.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Moharam, M. G.

Moon, S.

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Ni, X.

Oulton, R. F.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pile, D. F. P.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

Saraf, R. F.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Shalaev, V. M.

Singh, G.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Thammacharoen, C.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Yu, F.

Zhang, X.

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Biosens. Bioelectron. (1)

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Langmuir (1)

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700  nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Nanotechnology (1)

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

New J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10, 105018 (2008).
[CrossRef]

Opt. Express (1)

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the proposed LSPR substrate with MDM stack structure and gold nanogratings. TM-polarized light with λ=633nm propagating into an SF10 glass prism is incident to the LSPR configuration with an adhesion layer of chromium (2 nm), a thin gold film (45 nm), SiO2 dielectric film (dD), a gold overlayer (dOL), and gold nanogratings (20 nm). Rectangular gold nanogratings of a period of Λ=100nm and a width of 50 nm are regularly patterned on a planar stack structure. A 2-nm-thick binding layer is assumed to cover the whole substrate surface uniformly.

Fig. 2.
Fig. 2.

SPR curves of the LSPR substrate without a gold overlayer as the thickness of SiO2 film varies from 0 to 200 nm.

Fig. 3.
Fig. 3.

Sensitivity characteristics of the LSPR substrate without a gold overlayer with respect to the dielectric film thickness. The dotted line indicates the sensitivity of a conventional SPR system.

Fig. 4.
Fig. 4.

SPR curves of the proposed LSPR substrate when the thickness of the gold overlayer increases from 0 to 15 nm. SiO2 dielectric film has a thickness of (a) 120 nm and (b) 150 nm, respectively.

Fig. 5.
Fig. 5.

Sensitivity characteristics of the LSPR substrate with respect to the thicknesses of the dielectric film and gold overlayer. The geometry of rectangular gold nanogratings is fixed at a period of Λ=100nm, a width of 50 nm, and a thickness of 20 nm.

Fig. 6.
Fig. 6.

Sensor performance of SPR angle and its shift as the thickness of chromium film increases from 2 to 16 nm. The thicknesses of SiO2 film and gold overlayer are set to be dD=150nm and dOL=7nm.

Fig. 7.
Fig. 7.

FDTD results of the proposed LSPR structure at dD=120nm and dOL=5nm. The near-field distribution image of the EX component is normalized by the field amplitude of 40.

Metrics