Abstract

End-tidal carbon dioxide (PETCO2) monitoring has become an important tool in clinical monitoring, but there are still limitations in practice. Low-frequency modulation was used to reliably acquire respiratory information. Then the disturbances of humidity and flow rate were removed by signal decomposition. Finally, the real-time concentration of CO2 was calculated and displayed by an adjusted calibration function. Targeted experiments confirm that a period of 180 ms and a depth of 50% was the optimal choice. In this case, the effects of humidity and flow rate reflected by different components were removed effectively from the capnography. This capnometer obtains capnography with excellent accuracy and stability in long-term continuous monitoring.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Qvigstad, J. Kramer-Johansen, Ø. Tømte, T. Skålhegg, Ø. Sørensen, K. Sunde, and T. M. Olasveengen, “Clinical pilot study of different hand positions during manual chest compressions monitored with capnography,” Resuscitation 84, 1203–1207 (2013).
    [CrossRef]
  2. E. Scarth and T. Cook, “Capnography during cardiopulmonary resuscitation,” Resuscitation 83, 789–790 (2012).
    [CrossRef]
  3. O. Cinar, Y. A. Acar, İ. Arziman, E. Kilic, Y. E. Eyi, and R. Ocal, “Can mainstream end-tidal carbon dioxide measurement accurately predict the arterial carbon dioxide level of patients with acute dyspnea in ED,” Am. J. Emerg. Med. 30, 358–361 (2012).
    [CrossRef]
  4. M. B. Jaffe and J. Orr, “Continuous monitoring of respiratory flow and Co2,” IEEE Eng. Med. Biol. Mag. 29(2), 44–52 (2010).
    [CrossRef]
  5. D. Sakata, I. Matsubara, N. Gopalakrishnan, D. Westenskow, J. White, S. Yamamori, T. Egan, and N. Pace, “Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient,” J. Clin. Monitor. Comp. 23, 115–122 (2009).
    [CrossRef]
  6. M. Berggren, “Improved response time with a new miniaturised main-stream multigas monitor,” J. Clin. Monitor. Comp. 23, 355–361 (2009).
    [CrossRef]
  7. G. Dooly, J. Clifford, G. Leen, and E. Lewis, “Mid-infrared point sensor for in situ monitoring of Co2 emissions from large-scale engines,” Appl. Opt. 51, 7636–7642 (2012).
    [CrossRef]
  8. A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K. T. Grattan, “All-fiber tunable laser in the 2 μm region, designed for Co2 detection,” Appl. Opt. 51, 7011–7015 (2012).
    [CrossRef]
  9. M. Folke and B. Hök, “A new capnograph based on an electro acoustic sensor,” Med. Biol. Eng. Comput. 46, 55–59 (2008).
    [CrossRef]
  10. Z. Zhu, Y. Xu, and B. Jiang, “A one ppm NDIR methane gas sensor with single frequency filter denoising algorithm,” Sensors 12, 12729–12740 (2012).
    [CrossRef]
  11. J. Yang, H. Wang, B. Wang, and L. Wang, “Accurate and stable continuous monitoring module by mainstream capnography,” J. Clin. Monitor. Comp.1–7 (2013).
    [CrossRef]
  12. M. P. Phelan, J. P. Ornato, M. A. Peberdy, and F. M. Hustey, “Appropriate documentation of confirmation of endotracheal tube position and relationship to patient outcome from in-hospital cardiac arrest,” Resuscitation 84, 31–36 (2013).
    [CrossRef]
  13. G. M. Schmölzer, D. A. Poulton, J. A. Dawson, C. O. F. Kamlin, C. J. Morley, and P. G. Davis, “Assessment of flow waves and colorimetric Co2 detector for endotracheal tube placement during neonatal resuscitation,” Resuscitation 82, 307–312 (2011).
    [CrossRef]
  14. M. S. A. Raheem and O. M. Wahba, “A nasal catheter for the measurement of end-tidal carbon dioxide in spontaneously breathing patients: a preliminary evaluation,” Anesth. Analg. 110, 1039–1042 (2010).
    [CrossRef]
  15. C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng. 59, 3117–3123 (2012).
    [CrossRef]
  16. J. C. M. Antón and M. Silva-López, “Optical cavity for auto-referenced gas detection,” Opt. Express 19, 26079–26087 (2011).
    [CrossRef]
  17. S. Sivaramakrishnan, R. Rajamani, and B. D. Johnson, “Dynamic model inversion techniques for breath-by-breath measurement of carbon dioxide from low bandwidth sensors,” IEEE Sens. J. 10, 1637–1646 (2010).
    [CrossRef]
  18. Y. Yang, Z. Gao, D. Zhong, and W. Lin, “Detection of nitrogen dioxide using an external modulation diode laser,” Appl. Opt. 52, 3027–3030 (2013).
    [CrossRef]
  19. S. Xu and M. Chen, “Design and modeling of non-linear infrared transducer for measuring methane using cross-correlation method,” Measurement 45, 325–332 (2012).
    [CrossRef]
  20. Q. Xie, J. Li, X. Gao, and J. Jia, “Fourier domain local narrow-band signal extraction algorithm and its application to real-time infrared gas detection,” Sens. Actuators B 146, 35–39 (2010).
    [CrossRef]
  21. K. Kuhn, M. Siegwart, E. Pignanelli, T. Sauerwald, and A. Schutze, “Versatile infrared gas measurement system with tunable microstructured Fabry–Pérot filter,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), pp. 1938–1943.
  22. J. Yang, B. Wang, C. Fan, and L. Wang, “A new single-end mainstream Co2 capnograph,” Comp. Meth. Biomech. Biomed. Engin. 14, 1033–1039 (2011).
    [CrossRef]
  23. S. You-Wen, Z. Yi, L. Wen-Qing, X. Pin-Hua, C. Ka-Lok, L. Xian-Xin, W. Shi-Mei, and H. Shu-Hua, “Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption,” Chin. Phys. B 21, 090701 (2012).
    [CrossRef]
  24. D. P. Edelson, J. Eilevstjønn, E. K. Weidman, E. Retzer, T. L. V. Hoek, and B. S. Abella, “Capnography and chest-wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation,” Resuscitation 81, 317–322 (2010).
    [CrossRef]

2013 (3)

E. Qvigstad, J. Kramer-Johansen, Ø. Tømte, T. Skålhegg, Ø. Sørensen, K. Sunde, and T. M. Olasveengen, “Clinical pilot study of different hand positions during manual chest compressions monitored with capnography,” Resuscitation 84, 1203–1207 (2013).
[CrossRef]

M. P. Phelan, J. P. Ornato, M. A. Peberdy, and F. M. Hustey, “Appropriate documentation of confirmation of endotracheal tube position and relationship to patient outcome from in-hospital cardiac arrest,” Resuscitation 84, 31–36 (2013).
[CrossRef]

Y. Yang, Z. Gao, D. Zhong, and W. Lin, “Detection of nitrogen dioxide using an external modulation diode laser,” Appl. Opt. 52, 3027–3030 (2013).
[CrossRef]

2012 (8)

A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K. T. Grattan, “All-fiber tunable laser in the 2 μm region, designed for Co2 detection,” Appl. Opt. 51, 7011–7015 (2012).
[CrossRef]

G. Dooly, J. Clifford, G. Leen, and E. Lewis, “Mid-infrared point sensor for in situ monitoring of Co2 emissions from large-scale engines,” Appl. Opt. 51, 7636–7642 (2012).
[CrossRef]

Z. Zhu, Y. Xu, and B. Jiang, “A one ppm NDIR methane gas sensor with single frequency filter denoising algorithm,” Sensors 12, 12729–12740 (2012).
[CrossRef]

S. You-Wen, Z. Yi, L. Wen-Qing, X. Pin-Hua, C. Ka-Lok, L. Xian-Xin, W. Shi-Mei, and H. Shu-Hua, “Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption,” Chin. Phys. B 21, 090701 (2012).
[CrossRef]

C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng. 59, 3117–3123 (2012).
[CrossRef]

S. Xu and M. Chen, “Design and modeling of non-linear infrared transducer for measuring methane using cross-correlation method,” Measurement 45, 325–332 (2012).
[CrossRef]

E. Scarth and T. Cook, “Capnography during cardiopulmonary resuscitation,” Resuscitation 83, 789–790 (2012).
[CrossRef]

O. Cinar, Y. A. Acar, İ. Arziman, E. Kilic, Y. E. Eyi, and R. Ocal, “Can mainstream end-tidal carbon dioxide measurement accurately predict the arterial carbon dioxide level of patients with acute dyspnea in ED,” Am. J. Emerg. Med. 30, 358–361 (2012).
[CrossRef]

2011 (3)

G. M. Schmölzer, D. A. Poulton, J. A. Dawson, C. O. F. Kamlin, C. J. Morley, and P. G. Davis, “Assessment of flow waves and colorimetric Co2 detector for endotracheal tube placement during neonatal resuscitation,” Resuscitation 82, 307–312 (2011).
[CrossRef]

J. Yang, B. Wang, C. Fan, and L. Wang, “A new single-end mainstream Co2 capnograph,” Comp. Meth. Biomech. Biomed. Engin. 14, 1033–1039 (2011).
[CrossRef]

J. C. M. Antón and M. Silva-López, “Optical cavity for auto-referenced gas detection,” Opt. Express 19, 26079–26087 (2011).
[CrossRef]

2010 (5)

D. P. Edelson, J. Eilevstjønn, E. K. Weidman, E. Retzer, T. L. V. Hoek, and B. S. Abella, “Capnography and chest-wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation,” Resuscitation 81, 317–322 (2010).
[CrossRef]

S. Sivaramakrishnan, R. Rajamani, and B. D. Johnson, “Dynamic model inversion techniques for breath-by-breath measurement of carbon dioxide from low bandwidth sensors,” IEEE Sens. J. 10, 1637–1646 (2010).
[CrossRef]

M. S. A. Raheem and O. M. Wahba, “A nasal catheter for the measurement of end-tidal carbon dioxide in spontaneously breathing patients: a preliminary evaluation,” Anesth. Analg. 110, 1039–1042 (2010).
[CrossRef]

Q. Xie, J. Li, X. Gao, and J. Jia, “Fourier domain local narrow-band signal extraction algorithm and its application to real-time infrared gas detection,” Sens. Actuators B 146, 35–39 (2010).
[CrossRef]

M. B. Jaffe and J. Orr, “Continuous monitoring of respiratory flow and Co2,” IEEE Eng. Med. Biol. Mag. 29(2), 44–52 (2010).
[CrossRef]

2009 (2)

D. Sakata, I. Matsubara, N. Gopalakrishnan, D. Westenskow, J. White, S. Yamamori, T. Egan, and N. Pace, “Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient,” J. Clin. Monitor. Comp. 23, 115–122 (2009).
[CrossRef]

M. Berggren, “Improved response time with a new miniaturised main-stream multigas monitor,” J. Clin. Monitor. Comp. 23, 355–361 (2009).
[CrossRef]

2008 (1)

M. Folke and B. Hök, “A new capnograph based on an electro acoustic sensor,” Med. Biol. Eng. Comput. 46, 55–59 (2008).
[CrossRef]

Abella, B. S.

D. P. Edelson, J. Eilevstjønn, E. K. Weidman, E. Retzer, T. L. V. Hoek, and B. S. Abella, “Capnography and chest-wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation,” Resuscitation 81, 317–322 (2010).
[CrossRef]

Acar, Y. A.

O. Cinar, Y. A. Acar, İ. Arziman, E. Kilic, Y. E. Eyi, and R. Ocal, “Can mainstream end-tidal carbon dioxide measurement accurately predict the arterial carbon dioxide level of patients with acute dyspnea in ED,” Am. J. Emerg. Med. 30, 358–361 (2012).
[CrossRef]

Antón, J. C. M.

Arziman, I.

O. Cinar, Y. A. Acar, İ. Arziman, E. Kilic, Y. E. Eyi, and R. Ocal, “Can mainstream end-tidal carbon dioxide measurement accurately predict the arterial carbon dioxide level of patients with acute dyspnea in ED,” Am. J. Emerg. Med. 30, 358–361 (2012).
[CrossRef]

Berggren, M.

M. Berggren, “Improved response time with a new miniaturised main-stream multigas monitor,” J. Clin. Monitor. Comp. 23, 355–361 (2009).
[CrossRef]

Bremer, K.

Chen, M.

S. Xu and M. Chen, “Design and modeling of non-linear infrared transducer for measuring methane using cross-correlation method,” Measurement 45, 325–332 (2012).
[CrossRef]

Cinar, O.

O. Cinar, Y. A. Acar, İ. Arziman, E. Kilic, Y. E. Eyi, and R. Ocal, “Can mainstream end-tidal carbon dioxide measurement accurately predict the arterial carbon dioxide level of patients with acute dyspnea in ED,” Am. J. Emerg. Med. 30, 358–361 (2012).
[CrossRef]

Clifford, J.

Cook, T.

E. Scarth and T. Cook, “Capnography during cardiopulmonary resuscitation,” Resuscitation 83, 789–790 (2012).
[CrossRef]

Davis, P. G.

G. M. Schmölzer, D. A. Poulton, J. A. Dawson, C. O. F. Kamlin, C. J. Morley, and P. G. Davis, “Assessment of flow waves and colorimetric Co2 detector for endotracheal tube placement during neonatal resuscitation,” Resuscitation 82, 307–312 (2011).
[CrossRef]

Dawson, J. A.

G. M. Schmölzer, D. A. Poulton, J. A. Dawson, C. O. F. Kamlin, C. J. Morley, and P. G. Davis, “Assessment of flow waves and colorimetric Co2 detector for endotracheal tube placement during neonatal resuscitation,” Resuscitation 82, 307–312 (2011).
[CrossRef]

Dooly, G.

Edelson, D. P.

D. P. Edelson, J. Eilevstjønn, E. K. Weidman, E. Retzer, T. L. V. Hoek, and B. S. Abella, “Capnography and chest-wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation,” Resuscitation 81, 317–322 (2010).
[CrossRef]

Egan, T.

D. Sakata, I. Matsubara, N. Gopalakrishnan, D. Westenskow, J. White, S. Yamamori, T. Egan, and N. Pace, “Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient,” J. Clin. Monitor. Comp. 23, 115–122 (2009).
[CrossRef]

Eilevstjønn, J.

D. P. Edelson, J. Eilevstjønn, E. K. Weidman, E. Retzer, T. L. V. Hoek, and B. S. Abella, “Capnography and chest-wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation,” Resuscitation 81, 317–322 (2010).
[CrossRef]

Eyi, Y. E.

O. Cinar, Y. A. Acar, İ. Arziman, E. Kilic, Y. E. Eyi, and R. Ocal, “Can mainstream end-tidal carbon dioxide measurement accurately predict the arterial carbon dioxide level of patients with acute dyspnea in ED,” Am. J. Emerg. Med. 30, 358–361 (2012).
[CrossRef]

Fan, C.

J. Yang, B. Wang, C. Fan, and L. Wang, “A new single-end mainstream Co2 capnograph,” Comp. Meth. Biomech. Biomed. Engin. 14, 1033–1039 (2011).
[CrossRef]

Folke, M.

M. Folke and B. Hök, “A new capnograph based on an electro acoustic sensor,” Med. Biol. Eng. Comput. 46, 55–59 (2008).
[CrossRef]

Fung, A.

C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng. 59, 3117–3123 (2012).
[CrossRef]

Gao, X.

Q. Xie, J. Li, X. Gao, and J. Jia, “Fourier domain local narrow-band signal extraction algorithm and its application to real-time infrared gas detection,” Sens. Actuators B 146, 35–39 (2010).
[CrossRef]

Gao, Z.

Gopalakrishnan, N.

D. Sakata, I. Matsubara, N. Gopalakrishnan, D. Westenskow, J. White, S. Yamamori, T. Egan, and N. Pace, “Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient,” J. Clin. Monitor. Comp. 23, 115–122 (2009).
[CrossRef]

Grattan, K. T.

Gu, C.

C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng. 59, 3117–3123 (2012).
[CrossRef]

Hoek, T. L. V.

D. P. Edelson, J. Eilevstjønn, E. K. Weidman, E. Retzer, T. L. V. Hoek, and B. S. Abella, “Capnography and chest-wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation,” Resuscitation 81, 317–322 (2010).
[CrossRef]

Hök, B.

M. Folke and B. Hök, “A new capnograph based on an electro acoustic sensor,” Med. Biol. Eng. Comput. 46, 55–59 (2008).
[CrossRef]

Hustey, F. M.

M. P. Phelan, J. P. Ornato, M. A. Peberdy, and F. M. Hustey, “Appropriate documentation of confirmation of endotracheal tube position and relationship to patient outcome from in-hospital cardiac arrest,” Resuscitation 84, 31–36 (2013).
[CrossRef]

Jaffe, M. B.

M. B. Jaffe and J. Orr, “Continuous monitoring of respiratory flow and Co2,” IEEE Eng. Med. Biol. Mag. 29(2), 44–52 (2010).
[CrossRef]

Jia, J.

Q. Xie, J. Li, X. Gao, and J. Jia, “Fourier domain local narrow-band signal extraction algorithm and its application to real-time infrared gas detection,” Sens. Actuators B 146, 35–39 (2010).
[CrossRef]

Jiang, B.

Z. Zhu, Y. Xu, and B. Jiang, “A one ppm NDIR methane gas sensor with single frequency filter denoising algorithm,” Sensors 12, 12729–12740 (2012).
[CrossRef]

Jiang, S.

C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng. 59, 3117–3123 (2012).
[CrossRef]

Johnson, B. D.

S. Sivaramakrishnan, R. Rajamani, and B. D. Johnson, “Dynamic model inversion techniques for breath-by-breath measurement of carbon dioxide from low bandwidth sensors,” IEEE Sens. J. 10, 1637–1646 (2010).
[CrossRef]

Ka-Lok, C.

S. You-Wen, Z. Yi, L. Wen-Qing, X. Pin-Hua, C. Ka-Lok, L. Xian-Xin, W. Shi-Mei, and H. Shu-Hua, “Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption,” Chin. Phys. B 21, 090701 (2012).
[CrossRef]

Kamlin, C. O. F.

G. M. Schmölzer, D. A. Poulton, J. A. Dawson, C. O. F. Kamlin, C. J. Morley, and P. G. Davis, “Assessment of flow waves and colorimetric Co2 detector for endotracheal tube placement during neonatal resuscitation,” Resuscitation 82, 307–312 (2011).
[CrossRef]

Kilic, E.

O. Cinar, Y. A. Acar, İ. Arziman, E. Kilic, Y. E. Eyi, and R. Ocal, “Can mainstream end-tidal carbon dioxide measurement accurately predict the arterial carbon dioxide level of patients with acute dyspnea in ED,” Am. J. Emerg. Med. 30, 358–361 (2012).
[CrossRef]

Kramer-Johansen, J.

E. Qvigstad, J. Kramer-Johansen, Ø. Tømte, T. Skålhegg, Ø. Sørensen, K. Sunde, and T. M. Olasveengen, “Clinical pilot study of different hand positions during manual chest compressions monitored with capnography,” Resuscitation 84, 1203–1207 (2013).
[CrossRef]

Kuhn, K.

K. Kuhn, M. Siegwart, E. Pignanelli, T. Sauerwald, and A. Schutze, “Versatile infrared gas measurement system with tunable microstructured Fabry–Pérot filter,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), pp. 1938–1943.

Leen, G.

Lewis, E.

Li, C.

C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng. 59, 3117–3123 (2012).
[CrossRef]

Li, J.

Q. Xie, J. Li, X. Gao, and J. Jia, “Fourier domain local narrow-band signal extraction algorithm and its application to real-time infrared gas detection,” Sens. Actuators B 146, 35–39 (2010).
[CrossRef]

Li, R.

C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng. 59, 3117–3123 (2012).
[CrossRef]

Lin, W.

Matsubara, I.

D. Sakata, I. Matsubara, N. Gopalakrishnan, D. Westenskow, J. White, S. Yamamori, T. Egan, and N. Pace, “Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient,” J. Clin. Monitor. Comp. 23, 115–122 (2009).
[CrossRef]

Morley, C. J.

G. M. Schmölzer, D. A. Poulton, J. A. Dawson, C. O. F. Kamlin, C. J. Morley, and P. G. Davis, “Assessment of flow waves and colorimetric Co2 detector for endotracheal tube placement during neonatal resuscitation,” Resuscitation 82, 307–312 (2011).
[CrossRef]

Ocal, R.

O. Cinar, Y. A. Acar, İ. Arziman, E. Kilic, Y. E. Eyi, and R. Ocal, “Can mainstream end-tidal carbon dioxide measurement accurately predict the arterial carbon dioxide level of patients with acute dyspnea in ED,” Am. J. Emerg. Med. 30, 358–361 (2012).
[CrossRef]

Olasveengen, T. M.

E. Qvigstad, J. Kramer-Johansen, Ø. Tømte, T. Skålhegg, Ø. Sørensen, K. Sunde, and T. M. Olasveengen, “Clinical pilot study of different hand positions during manual chest compressions monitored with capnography,” Resuscitation 84, 1203–1207 (2013).
[CrossRef]

Ornato, J. P.

M. P. Phelan, J. P. Ornato, M. A. Peberdy, and F. M. Hustey, “Appropriate documentation of confirmation of endotracheal tube position and relationship to patient outcome from in-hospital cardiac arrest,” Resuscitation 84, 31–36 (2013).
[CrossRef]

Orr, J.

M. B. Jaffe and J. Orr, “Continuous monitoring of respiratory flow and Co2,” IEEE Eng. Med. Biol. Mag. 29(2), 44–52 (2010).
[CrossRef]

Pace, N.

D. Sakata, I. Matsubara, N. Gopalakrishnan, D. Westenskow, J. White, S. Yamamori, T. Egan, and N. Pace, “Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient,” J. Clin. Monitor. Comp. 23, 115–122 (2009).
[CrossRef]

Pal, A.

Peberdy, M. A.

M. P. Phelan, J. P. Ornato, M. A. Peberdy, and F. M. Hustey, “Appropriate documentation of confirmation of endotracheal tube position and relationship to patient outcome from in-hospital cardiac arrest,” Resuscitation 84, 31–36 (2013).
[CrossRef]

Phelan, M. P.

M. P. Phelan, J. P. Ornato, M. A. Peberdy, and F. M. Hustey, “Appropriate documentation of confirmation of endotracheal tube position and relationship to patient outcome from in-hospital cardiac arrest,” Resuscitation 84, 31–36 (2013).
[CrossRef]

Pignanelli, E.

K. Kuhn, M. Siegwart, E. Pignanelli, T. Sauerwald, and A. Schutze, “Versatile infrared gas measurement system with tunable microstructured Fabry–Pérot filter,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), pp. 1938–1943.

Pin-Hua, X.

S. You-Wen, Z. Yi, L. Wen-Qing, X. Pin-Hua, C. Ka-Lok, L. Xian-Xin, W. Shi-Mei, and H. Shu-Hua, “Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption,” Chin. Phys. B 21, 090701 (2012).
[CrossRef]

Poulton, D. A.

G. M. Schmölzer, D. A. Poulton, J. A. Dawson, C. O. F. Kamlin, C. J. Morley, and P. G. Davis, “Assessment of flow waves and colorimetric Co2 detector for endotracheal tube placement during neonatal resuscitation,” Resuscitation 82, 307–312 (2011).
[CrossRef]

Qvigstad, E.

E. Qvigstad, J. Kramer-Johansen, Ø. Tømte, T. Skålhegg, Ø. Sørensen, K. Sunde, and T. M. Olasveengen, “Clinical pilot study of different hand positions during manual chest compressions monitored with capnography,” Resuscitation 84, 1203–1207 (2013).
[CrossRef]

Raheem, M. S. A.

M. S. A. Raheem and O. M. Wahba, “A nasal catheter for the measurement of end-tidal carbon dioxide in spontaneously breathing patients: a preliminary evaluation,” Anesth. Analg. 110, 1039–1042 (2010).
[CrossRef]

Rajamani, R.

S. Sivaramakrishnan, R. Rajamani, and B. D. Johnson, “Dynamic model inversion techniques for breath-by-breath measurement of carbon dioxide from low bandwidth sensors,” IEEE Sens. J. 10, 1637–1646 (2010).
[CrossRef]

Retzer, E.

D. P. Edelson, J. Eilevstjønn, E. K. Weidman, E. Retzer, T. L. V. Hoek, and B. S. Abella, “Capnography and chest-wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation,” Resuscitation 81, 317–322 (2010).
[CrossRef]

Sakata, D.

D. Sakata, I. Matsubara, N. Gopalakrishnan, D. Westenskow, J. White, S. Yamamori, T. Egan, and N. Pace, “Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient,” J. Clin. Monitor. Comp. 23, 115–122 (2009).
[CrossRef]

Sauerwald, T.

K. Kuhn, M. Siegwart, E. Pignanelli, T. Sauerwald, and A. Schutze, “Versatile infrared gas measurement system with tunable microstructured Fabry–Pérot filter,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), pp. 1938–1943.

Scarth, E.

E. Scarth and T. Cook, “Capnography during cardiopulmonary resuscitation,” Resuscitation 83, 789–790 (2012).
[CrossRef]

Schmölzer, G. M.

G. M. Schmölzer, D. A. Poulton, J. A. Dawson, C. O. F. Kamlin, C. J. Morley, and P. G. Davis, “Assessment of flow waves and colorimetric Co2 detector for endotracheal tube placement during neonatal resuscitation,” Resuscitation 82, 307–312 (2011).
[CrossRef]

Schutze, A.

K. Kuhn, M. Siegwart, E. Pignanelli, T. Sauerwald, and A. Schutze, “Versatile infrared gas measurement system with tunable microstructured Fabry–Pérot filter,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), pp. 1938–1943.

Sen, R.

Shi-Mei, W.

S. You-Wen, Z. Yi, L. Wen-Qing, X. Pin-Hua, C. Ka-Lok, L. Xian-Xin, W. Shi-Mei, and H. Shu-Hua, “Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption,” Chin. Phys. B 21, 090701 (2012).
[CrossRef]

Shu-Hua, H.

S. You-Wen, Z. Yi, L. Wen-Qing, X. Pin-Hua, C. Ka-Lok, L. Xian-Xin, W. Shi-Mei, and H. Shu-Hua, “Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption,” Chin. Phys. B 21, 090701 (2012).
[CrossRef]

Siegwart, M.

K. Kuhn, M. Siegwart, E. Pignanelli, T. Sauerwald, and A. Schutze, “Versatile infrared gas measurement system with tunable microstructured Fabry–Pérot filter,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), pp. 1938–1943.

Silva-López, M.

Sivaramakrishnan, S.

S. Sivaramakrishnan, R. Rajamani, and B. D. Johnson, “Dynamic model inversion techniques for breath-by-breath measurement of carbon dioxide from low bandwidth sensors,” IEEE Sens. J. 10, 1637–1646 (2010).
[CrossRef]

Skålhegg, T.

E. Qvigstad, J. Kramer-Johansen, Ø. Tømte, T. Skålhegg, Ø. Sørensen, K. Sunde, and T. M. Olasveengen, “Clinical pilot study of different hand positions during manual chest compressions monitored with capnography,” Resuscitation 84, 1203–1207 (2013).
[CrossRef]

Sørensen, Ø.

E. Qvigstad, J. Kramer-Johansen, Ø. Tømte, T. Skålhegg, Ø. Sørensen, K. Sunde, and T. M. Olasveengen, “Clinical pilot study of different hand positions during manual chest compressions monitored with capnography,” Resuscitation 84, 1203–1207 (2013).
[CrossRef]

Sun, T.

Sunde, K.

E. Qvigstad, J. Kramer-Johansen, Ø. Tømte, T. Skålhegg, Ø. Sørensen, K. Sunde, and T. M. Olasveengen, “Clinical pilot study of different hand positions during manual chest compressions monitored with capnography,” Resuscitation 84, 1203–1207 (2013).
[CrossRef]

Tømte, Ø.

E. Qvigstad, J. Kramer-Johansen, Ø. Tømte, T. Skålhegg, Ø. Sørensen, K. Sunde, and T. M. Olasveengen, “Clinical pilot study of different hand positions during manual chest compressions monitored with capnography,” Resuscitation 84, 1203–1207 (2013).
[CrossRef]

Torres, C.

C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng. 59, 3117–3123 (2012).
[CrossRef]

Wahba, O. M.

M. S. A. Raheem and O. M. Wahba, “A nasal catheter for the measurement of end-tidal carbon dioxide in spontaneously breathing patients: a preliminary evaluation,” Anesth. Analg. 110, 1039–1042 (2010).
[CrossRef]

Wang, B.

J. Yang, B. Wang, C. Fan, and L. Wang, “A new single-end mainstream Co2 capnograph,” Comp. Meth. Biomech. Biomed. Engin. 14, 1033–1039 (2011).
[CrossRef]

J. Yang, H. Wang, B. Wang, and L. Wang, “Accurate and stable continuous monitoring module by mainstream capnography,” J. Clin. Monitor. Comp.1–7 (2013).
[CrossRef]

Wang, H.

J. Yang, H. Wang, B. Wang, and L. Wang, “Accurate and stable continuous monitoring module by mainstream capnography,” J. Clin. Monitor. Comp.1–7 (2013).
[CrossRef]

Wang, L.

J. Yang, B. Wang, C. Fan, and L. Wang, “A new single-end mainstream Co2 capnograph,” Comp. Meth. Biomech. Biomed. Engin. 14, 1033–1039 (2011).
[CrossRef]

J. Yang, H. Wang, B. Wang, and L. Wang, “Accurate and stable continuous monitoring module by mainstream capnography,” J. Clin. Monitor. Comp.1–7 (2013).
[CrossRef]

Weidman, E. K.

D. P. Edelson, J. Eilevstjønn, E. K. Weidman, E. Retzer, T. L. V. Hoek, and B. S. Abella, “Capnography and chest-wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation,” Resuscitation 81, 317–322 (2010).
[CrossRef]

Wen-Qing, L.

S. You-Wen, Z. Yi, L. Wen-Qing, X. Pin-Hua, C. Ka-Lok, L. Xian-Xin, W. Shi-Mei, and H. Shu-Hua, “Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption,” Chin. Phys. B 21, 090701 (2012).
[CrossRef]

Westenskow, D.

D. Sakata, I. Matsubara, N. Gopalakrishnan, D. Westenskow, J. White, S. Yamamori, T. Egan, and N. Pace, “Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient,” J. Clin. Monitor. Comp. 23, 115–122 (2009).
[CrossRef]

White, J.

D. Sakata, I. Matsubara, N. Gopalakrishnan, D. Westenskow, J. White, S. Yamamori, T. Egan, and N. Pace, “Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient,” J. Clin. Monitor. Comp. 23, 115–122 (2009).
[CrossRef]

Xian-Xin, L.

S. You-Wen, Z. Yi, L. Wen-Qing, X. Pin-Hua, C. Ka-Lok, L. Xian-Xin, W. Shi-Mei, and H. Shu-Hua, “Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption,” Chin. Phys. B 21, 090701 (2012).
[CrossRef]

Xie, Q.

Q. Xie, J. Li, X. Gao, and J. Jia, “Fourier domain local narrow-band signal extraction algorithm and its application to real-time infrared gas detection,” Sens. Actuators B 146, 35–39 (2010).
[CrossRef]

Xu, S.

S. Xu and M. Chen, “Design and modeling of non-linear infrared transducer for measuring methane using cross-correlation method,” Measurement 45, 325–332 (2012).
[CrossRef]

Xu, Y.

Z. Zhu, Y. Xu, and B. Jiang, “A one ppm NDIR methane gas sensor with single frequency filter denoising algorithm,” Sensors 12, 12729–12740 (2012).
[CrossRef]

Yamamori, S.

D. Sakata, I. Matsubara, N. Gopalakrishnan, D. Westenskow, J. White, S. Yamamori, T. Egan, and N. Pace, “Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient,” J. Clin. Monitor. Comp. 23, 115–122 (2009).
[CrossRef]

Yang, J.

J. Yang, B. Wang, C. Fan, and L. Wang, “A new single-end mainstream Co2 capnograph,” Comp. Meth. Biomech. Biomed. Engin. 14, 1033–1039 (2011).
[CrossRef]

J. Yang, H. Wang, B. Wang, and L. Wang, “Accurate and stable continuous monitoring module by mainstream capnography,” J. Clin. Monitor. Comp.1–7 (2013).
[CrossRef]

Yang, Y.

Yao, S.

Yi, Z.

S. You-Wen, Z. Yi, L. Wen-Qing, X. Pin-Hua, C. Ka-Lok, L. Xian-Xin, W. Shi-Mei, and H. Shu-Hua, “Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption,” Chin. Phys. B 21, 090701 (2012).
[CrossRef]

You-Wen, S.

S. You-Wen, Z. Yi, L. Wen-Qing, X. Pin-Hua, C. Ka-Lok, L. Xian-Xin, W. Shi-Mei, and H. Shu-Hua, “Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption,” Chin. Phys. B 21, 090701 (2012).
[CrossRef]

Zhang, H.

C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng. 59, 3117–3123 (2012).
[CrossRef]

Zhong, D.

Zhu, Z.

Z. Zhu, Y. Xu, and B. Jiang, “A one ppm NDIR methane gas sensor with single frequency filter denoising algorithm,” Sensors 12, 12729–12740 (2012).
[CrossRef]

Am. J. Emerg. Med. (1)

O. Cinar, Y. A. Acar, İ. Arziman, E. Kilic, Y. E. Eyi, and R. Ocal, “Can mainstream end-tidal carbon dioxide measurement accurately predict the arterial carbon dioxide level of patients with acute dyspnea in ED,” Am. J. Emerg. Med. 30, 358–361 (2012).
[CrossRef]

Anesth. Analg. (1)

M. S. A. Raheem and O. M. Wahba, “A nasal catheter for the measurement of end-tidal carbon dioxide in spontaneously breathing patients: a preliminary evaluation,” Anesth. Analg. 110, 1039–1042 (2010).
[CrossRef]

Appl. Opt. (3)

Chin. Phys. B (1)

S. You-Wen, Z. Yi, L. Wen-Qing, X. Pin-Hua, C. Ka-Lok, L. Xian-Xin, W. Shi-Mei, and H. Shu-Hua, “Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption,” Chin. Phys. B 21, 090701 (2012).
[CrossRef]

Comp. Meth. Biomech. Biomed. Engin. (1)

J. Yang, B. Wang, C. Fan, and L. Wang, “A new single-end mainstream Co2 capnograph,” Comp. Meth. Biomech. Biomed. Engin. 14, 1033–1039 (2011).
[CrossRef]

IEEE Eng. Med. Biol. Mag. (1)

M. B. Jaffe and J. Orr, “Continuous monitoring of respiratory flow and Co2,” IEEE Eng. Med. Biol. Mag. 29(2), 44–52 (2010).
[CrossRef]

IEEE Sens. J. (1)

S. Sivaramakrishnan, R. Rajamani, and B. D. Johnson, “Dynamic model inversion techniques for breath-by-breath measurement of carbon dioxide from low bandwidth sensors,” IEEE Sens. J. 10, 1637–1646 (2010).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

C. Gu, R. Li, H. Zhang, A. Fung, C. Torres, S. Jiang, and C. Li, “Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng. 59, 3117–3123 (2012).
[CrossRef]

J. Clin. Monitor. Comp. (2)

D. Sakata, I. Matsubara, N. Gopalakrishnan, D. Westenskow, J. White, S. Yamamori, T. Egan, and N. Pace, “Flow-through versus sidestream capnometry for detection of end tidal carbon dioxide in the sedated patient,” J. Clin. Monitor. Comp. 23, 115–122 (2009).
[CrossRef]

M. Berggren, “Improved response time with a new miniaturised main-stream multigas monitor,” J. Clin. Monitor. Comp. 23, 355–361 (2009).
[CrossRef]

Measurement (1)

S. Xu and M. Chen, “Design and modeling of non-linear infrared transducer for measuring methane using cross-correlation method,” Measurement 45, 325–332 (2012).
[CrossRef]

Med. Biol. Eng. Comput. (1)

M. Folke and B. Hök, “A new capnograph based on an electro acoustic sensor,” Med. Biol. Eng. Comput. 46, 55–59 (2008).
[CrossRef]

Opt. Express (1)

Resuscitation (5)

D. P. Edelson, J. Eilevstjønn, E. K. Weidman, E. Retzer, T. L. V. Hoek, and B. S. Abella, “Capnography and chest-wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation,” Resuscitation 81, 317–322 (2010).
[CrossRef]

M. P. Phelan, J. P. Ornato, M. A. Peberdy, and F. M. Hustey, “Appropriate documentation of confirmation of endotracheal tube position and relationship to patient outcome from in-hospital cardiac arrest,” Resuscitation 84, 31–36 (2013).
[CrossRef]

G. M. Schmölzer, D. A. Poulton, J. A. Dawson, C. O. F. Kamlin, C. J. Morley, and P. G. Davis, “Assessment of flow waves and colorimetric Co2 detector for endotracheal tube placement during neonatal resuscitation,” Resuscitation 82, 307–312 (2011).
[CrossRef]

E. Qvigstad, J. Kramer-Johansen, Ø. Tømte, T. Skålhegg, Ø. Sørensen, K. Sunde, and T. M. Olasveengen, “Clinical pilot study of different hand positions during manual chest compressions monitored with capnography,” Resuscitation 84, 1203–1207 (2013).
[CrossRef]

E. Scarth and T. Cook, “Capnography during cardiopulmonary resuscitation,” Resuscitation 83, 789–790 (2012).
[CrossRef]

Sens. Actuators B (1)

Q. Xie, J. Li, X. Gao, and J. Jia, “Fourier domain local narrow-band signal extraction algorithm and its application to real-time infrared gas detection,” Sens. Actuators B 146, 35–39 (2010).
[CrossRef]

Sensors (1)

Z. Zhu, Y. Xu, and B. Jiang, “A one ppm NDIR methane gas sensor with single frequency filter denoising algorithm,” Sensors 12, 12729–12740 (2012).
[CrossRef]

Other (2)

J. Yang, H. Wang, B. Wang, and L. Wang, “Accurate and stable continuous monitoring module by mainstream capnography,” J. Clin. Monitor. Comp.1–7 (2013).
[CrossRef]

K. Kuhn, M. Siegwart, E. Pignanelli, T. Sauerwald, and A. Schutze, “Versatile infrared gas measurement system with tunable microstructured Fabry–Pérot filter,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), pp. 1938–1943.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Structure of this mainstream capnography. A lamp and a sensor were placed in both sides of the mainstream airway adapter that defines the flow path for the gases being monitored.

Fig. 2.
Fig. 2.

Carrier in different periods (T, ms) and depths (D, %). There is an obvious jitter in (a) and (b) and overflow in (d), while a good response to the lamp is in (c).

Fig. 3.
Fig. 3.

Deviation of carrier in different cycles, which result in the corresponding position change of the wave crest.

Fig. 4.
Fig. 4.

Statistics on the restriction of carrier in different modulation signals.

Fig. 5.
Fig. 5.

Amplitude of alternating component versus modulation depth (a) F=5Hz and modulation frequency (b) D=50%.

Fig. 6.
Fig. 6.

Form of response to different disturbances of flow. (a) Pulse airflow of short duration. (b) Continuous airflow. (c) Constant velocity humidification flow. (d) Constant velocity CO2 flow.

Fig. 7.
Fig. 7.

Capnography of one volunteer obtained by this mainstream capnometer.

Tables (2)

Tables Icon

Table 1. Degree to which each of These Factors Affects the Componentsa

Tables Icon

Table 2. Stability Test on Three Continuous Days

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I=I0eα(λ)CL,
[VdVa]=[0.50.50.50.5][VhVl].
[Dac(n)Dar(n)Ddc(n)Ddr(n)]=[Vac(n3)Vac(n2)Vac(n1)Vac(n)Var(n3)Var(n2)Var(n1)Var(n)Vdc(n3)Vdc(n2)Vdc(n1)Vdc(n)Vdr(n3)Vdr(n2)Vdr(n1)Vdr(n)][0.10.40.40.1],
Rs(n)=Dac(n)Dar(n).
Rc(n)=α1·(Rs(n)+α2),
α1=1/D¯acα2=D¯ar,
C(n)=p1*Rc(n)3+p2*Rc(n)2+p3*Rc(n)+p4.
C(n)=756.3*Rc(n)3+2080*Rc(n)21962*Rc(n)+638.3,

Metrics