Abstract

Some stand-alone airborne systems of target reconnaissance such as a missile seeker head use range-gated laser active imaging to visualize a target in the scene. To center the visualized zone on the target, it is important to know the distance between the active imaging system and the target. However, as this exact distance is not known before the detection of the target, it can be only estimated. This estimated distance can be erroneous (max500m) with some technological drifts (gyrometric drift, accelerometric drift, missile position error, etc.). To be able to evaluate the impact of a distance estimation error on target illuminance in active imaging, the expressions of the illuminance attenuation ratio according to the decentered target position with regard to the visualized zone were determined. These different equations will be used to determine, in future stand-alone reconnaissance systems, the target signal-to-noise ratio as a function of the localization error. Generally speaking, two modes of visualization were used: first by using a fixed width of the visualized zone, and second by increasing the width of the visualized zone as a function of the distance. The defined different expressions allowed us to study the illuminance behavior of the target with regard to the value of the gap (difference between the estimated distance and the real distance) for each mode of visualization. The results showed that from a target distance of about 1 km, the visualization mode with variable zone width allowed us to decrease the target illuminance less during a gap caused by an estimation error of the target distance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Repasi, P. Lutzmann, O. Steinvall, M. Elmqvist, B. Göhler, and G. Anstett, “Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations,” Appl. Opt. 48, 5956–5969 (2009).
    [CrossRef]
  2. G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging-system,” Opt. Eng. 32, 2185–2190 (1993).
    [CrossRef]
  3. D. Bonnier and V. Larochelle, “A range-gated active imaging system for search and rescue, and surveillance operations,” in Proc. SPIE 2744, 134–145 (1996).
    [CrossRef]
  4. H. Steingold and R. E. Strauch, “Backscatter effects in active night vision systems,” Appl. Opt. 8, 147–154 (1969).
    [CrossRef]
  5. P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
    [CrossRef]
  6. D. Monnin, A. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in 3rd IEEE International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT’06) (2006), pp. 939–945.
  7. M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
    [CrossRef]
  8. L. F. Gillespie, “Apparent illumination as a function of range in gated, laser night-viewing systems,” J. Opt. Soc. Am. 56, 883–887 (1966).
    [CrossRef]
  9. O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
  10. R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15, 3816–3832 (2007).
    [CrossRef]
  11. G. M. Siouris, Missile Guidance and Control Systems (Springer, 2004).
  12. G. C. Holst, Electro-Optical Imaging System Performance (SPIE, 1995).

2009 (2)

E. Repasi, P. Lutzmann, O. Steinvall, M. Elmqvist, B. Göhler, and G. Anstett, “Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations,” Appl. Opt. 48, 5956–5969 (2009).
[CrossRef]

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

2007 (1)

2006 (1)

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
[CrossRef]

1999 (1)

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).

1996 (1)

D. Bonnier and V. Larochelle, “A range-gated active imaging system for search and rescue, and surveillance operations,” in Proc. SPIE 2744, 134–145 (1996).
[CrossRef]

1993 (1)

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging-system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

1969 (1)

1966 (1)

Andersson, P.

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
[CrossRef]

Anstett, G.

Bacher, E.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

Bolander, G.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).

Bonnier, D.

D. Bonnier and V. Larochelle, “A range-gated active imaging system for search and rescue, and surveillance operations,” in Proc. SPIE 2744, 134–145 (1996).
[CrossRef]

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging-system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Carlsson, C.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).

Christnacher, F.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

D. Monnin, A. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in 3rd IEEE International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT’06) (2006), pp. 939–945.

Elmqvist, M.

Espinola, R. L.

Forand, J. L.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging-system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Fournier, G. R.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging-system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Gillespie, L. F.

Göhler, B.

Halford, C. E.

Holst, G. C.

G. C. Holst, Electro-Optical Imaging System Performance (SPIE, 1995).

Jacobs, E. L.

Larochelle, V.

D. Bonnier and V. Larochelle, “A range-gated active imaging system for search and rescue, and surveillance operations,” in Proc. SPIE 2744, 134–145 (1996).
[CrossRef]

Laurenzis, M.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

Letalick, D.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).

Lutz, Y.

D. Monnin, A. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in 3rd IEEE International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT’06) (2006), pp. 939–945.

Lutzmann, P.

Metzger, N.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

Monnin, D.

D. Monnin, A. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in 3rd IEEE International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT’06) (2006), pp. 939–945.

Olsson, H.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).

Pace, P. W.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging-system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Repasi, E.

Schneider, A.

D. Monnin, A. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in 3rd IEEE International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT’06) (2006), pp. 939–945.

Siouris, G. M.

G. M. Siouris, Missile Guidance and Control Systems (Springer, 2004).

Steingold, H.

Steinvall, O.

E. Repasi, P. Lutzmann, O. Steinvall, M. Elmqvist, B. Göhler, and G. Anstett, “Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations,” Appl. Opt. 48, 5956–5969 (2009).
[CrossRef]

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).

Strauch, R. E.

Tofsted, D. H.

Vollmerhausen, R.

Zielenski, I.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

Opt. Eng. (2)

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
[CrossRef]

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging-system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Opt. Express (1)

Proc. SPIE (3)

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).

D. Bonnier and V. Larochelle, “A range-gated active imaging system for search and rescue, and surveillance operations,” in Proc. SPIE 2744, 134–145 (1996).
[CrossRef]

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “Three-dimensional range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

Other (3)

D. Monnin, A. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in 3rd IEEE International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT’06) (2006), pp. 939–945.

G. M. Siouris, Missile Guidance and Control Systems (Springer, 2004).

G. C. Holst, Electro-Optical Imaging System Performance (SPIE, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Two modes of visualization: (a) fixed mode and (b) variable mode.

Fig. 2.
Fig. 2.

Illuminance with (a) shift in front of the target and (b) shift behind the target.

Fig. 3.
Fig. 3.

Identical illuminance attenuation ratio in fixed mode for the gap in front of and behind the target with a zone width of 1000 m for different gap values.

Fig. 4.
Fig. 4.

Illuminance in fixed mode with a zone width of 100 m at the target position, with a gap in front of the target at 25 m and with a gap behind the target at 25 m.

Fig. 5.
Fig. 5.

Illuminance attenuation ratio in variable mode for different gap values, with a gap in front of the target.

Fig. 6.
Fig. 6.

Illuminance attenuation ratio in variable mode for different gap values, with a gap behind the target.

Fig. 7.
Fig. 7.

Recorded range-gated images in variable mode with different vertex distances of the visualized zone.

Fig. 8.
Fig. 8.

Comparison in fixed mode between the experimental values and the theoretical values for small gap values.

Fig. 9.
Fig. 9.

Comparison in variable mode between the experimental values and the theoretical values for important gap values.

Fig. 10.
Fig. 10.

Comparison in variable mode between the experimental values and the theoretical values for small gap values.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

yf1=Ef1·(2ξ+ΔxΔx),
yf2=Ef2·(2ξ+ΔxΔx),
Efi=Pfi·K·e2αdd2,
Pfi=Ppeak·fimage·Tpose·ΔtiΔpi.
yv1=Ev1·(d02ξrdd0ξrd),
yv2=Ev2·(d0rdd0+ξrd),
Evi=Pvi·K·e2αdd2,
Pvi=(Ppeak·fimage·Tpose)·ΔtiΔpi.
Pv1=Πconstants·d0ξrd2d02ξrd,
Pv2=Πconstants·d0+ξrd2d0+2ξrd,
Pv0=Πconstants·d0rd2d0rd.
Txi/0=yxiyx0.
Tf/0=(2ξ+Δx)Δx.
Tv1/0=(2d0rd)(d02ξrd)(2d02ξrd)(d0rd).
Tv2/0=(2d0rd)(2d0+2ξrd).
Ti%=(1Ti/0)·100.

Metrics