Abstract

In order to certify the accuracy of a null corrector, a method using a single spherical lens is proposed in this paper. An inversed optical path of the infinite conjugated null corrector is introduced, and the aberrations are compensated by using the certifying lens with a reflective inner surface. Initial configurations of the certifying lens are deduced from the aberration characteristics of the null test. A F1.33 ellipsoidal mirror’s null corrector is taken for an example. Based on the calculated parameters of the certifying lens, the contribution of the surface’s spherical aberration is set as a merit function in the optimization. The root-mean-square wavefront error of the optimized design is 0.0016λ (λ=632.8nm). The method in this paper is simple and low-cost, compared with the existing methods.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Neil, “Optical design dependence on technology development,” Proc. SPIE 7428, 742802 (2009).
  2. D. Malacara, Optical Shop Testing (China Machine, 1983).
  3. T. Kim and J. Burge, “Null test for a highly paraboloidal mirror,” Appl. Opt. 43, 3614–3618 (2004).
    [CrossRef]
  4. R. Pursel, “Null testing of a f/0.6 concave aspheric surface,” Proc. SPIE 2263, 210–217 (1994).
  5. R. Zehnder, J. Burge, and C. Zhao, “Use of computer generated holograms for alignment of complex null correctors,” Proc. SPIE 6273, 62732S (2006).
  6. J. Burge, “A null test for null correctors: error analysis,” Proc. SPIE 1993, 86–97 (1993).
  7. J. Burge, “Certification of null correctors for primary mirrors,” Proc. SPIE 1994, 248–259 (1994).
  8. P. Mallik, R. Zehnder, and J. Burge, “Absolute calibration of null correctors using twin computer-generated holograms,” Proc. SPIE, 6292, 62920H (2006).
  9. C. X. Wang and F. Wu, “Research on testing the null corrector using computer-generated holograms,” Proc. SPIE 4924, 270–276 (2002).
  10. I. A. Palusinski and J. M. Sasian, “Sag and phase descriptions for null corrector certifiers,” Opt. Eng. 43, 697–701 (2004).
    [CrossRef]
  11. J. M. Sasian, S. A. Lerner, and J. Burge, “Certification of a null corrector via a diamond turned asphere: design and implementation,” Proc. SPIE 3749, 284–285 (1999).
  12. A. B. Meinel and M. P. Meinel, “Comparison of lens and Fresnel null correctors,” Appl. Opt. 40, 3688–3697 (2001).
    [CrossRef]
  13. A. Offner, “A null corrector for paraboloidal mirrors,” Appl. Opt. 2, 153–155 (1963).
    [CrossRef]
  14. R. Kingslake, Lens Design Fundamentals, 2nd ed. (Academic, 2010).
  15. J. R. Moya and J. E. A. Landgrave, “Third-order design of refractive Offner compensators,” Appl. Opt. 26, 2667–2672 (1987).
    [CrossRef]
  16. ZEMAX Optical Design Program User’s Guide (ZEMAX Development Corporation, 2009).

2009

I. A. Neil, “Optical design dependence on technology development,” Proc. SPIE 7428, 742802 (2009).

2006

R. Zehnder, J. Burge, and C. Zhao, “Use of computer generated holograms for alignment of complex null correctors,” Proc. SPIE 6273, 62732S (2006).

P. Mallik, R. Zehnder, and J. Burge, “Absolute calibration of null correctors using twin computer-generated holograms,” Proc. SPIE, 6292, 62920H (2006).

2004

I. A. Palusinski and J. M. Sasian, “Sag and phase descriptions for null corrector certifiers,” Opt. Eng. 43, 697–701 (2004).
[CrossRef]

T. Kim and J. Burge, “Null test for a highly paraboloidal mirror,” Appl. Opt. 43, 3614–3618 (2004).
[CrossRef]

2002

C. X. Wang and F. Wu, “Research on testing the null corrector using computer-generated holograms,” Proc. SPIE 4924, 270–276 (2002).

2001

1999

J. M. Sasian, S. A. Lerner, and J. Burge, “Certification of a null corrector via a diamond turned asphere: design and implementation,” Proc. SPIE 3749, 284–285 (1999).

1994

R. Pursel, “Null testing of a f/0.6 concave aspheric surface,” Proc. SPIE 2263, 210–217 (1994).

J. Burge, “Certification of null correctors for primary mirrors,” Proc. SPIE 1994, 248–259 (1994).

1993

J. Burge, “A null test for null correctors: error analysis,” Proc. SPIE 1993, 86–97 (1993).

1987

1963

Burge, J.

R. Zehnder, J. Burge, and C. Zhao, “Use of computer generated holograms for alignment of complex null correctors,” Proc. SPIE 6273, 62732S (2006).

P. Mallik, R. Zehnder, and J. Burge, “Absolute calibration of null correctors using twin computer-generated holograms,” Proc. SPIE, 6292, 62920H (2006).

T. Kim and J. Burge, “Null test for a highly paraboloidal mirror,” Appl. Opt. 43, 3614–3618 (2004).
[CrossRef]

J. M. Sasian, S. A. Lerner, and J. Burge, “Certification of a null corrector via a diamond turned asphere: design and implementation,” Proc. SPIE 3749, 284–285 (1999).

J. Burge, “Certification of null correctors for primary mirrors,” Proc. SPIE 1994, 248–259 (1994).

J. Burge, “A null test for null correctors: error analysis,” Proc. SPIE 1993, 86–97 (1993).

Kim, T.

Kingslake, R.

R. Kingslake, Lens Design Fundamentals, 2nd ed. (Academic, 2010).

Landgrave, J. E. A.

Lerner, S. A.

J. M. Sasian, S. A. Lerner, and J. Burge, “Certification of a null corrector via a diamond turned asphere: design and implementation,” Proc. SPIE 3749, 284–285 (1999).

Malacara, D.

D. Malacara, Optical Shop Testing (China Machine, 1983).

Mallik, P.

P. Mallik, R. Zehnder, and J. Burge, “Absolute calibration of null correctors using twin computer-generated holograms,” Proc. SPIE, 6292, 62920H (2006).

Meinel, A. B.

Meinel, M. P.

Moya, J. R.

Neil, I. A.

I. A. Neil, “Optical design dependence on technology development,” Proc. SPIE 7428, 742802 (2009).

Offner, A.

Palusinski, I. A.

I. A. Palusinski and J. M. Sasian, “Sag and phase descriptions for null corrector certifiers,” Opt. Eng. 43, 697–701 (2004).
[CrossRef]

Pursel, R.

R. Pursel, “Null testing of a f/0.6 concave aspheric surface,” Proc. SPIE 2263, 210–217 (1994).

Sasian, J. M.

I. A. Palusinski and J. M. Sasian, “Sag and phase descriptions for null corrector certifiers,” Opt. Eng. 43, 697–701 (2004).
[CrossRef]

J. M. Sasian, S. A. Lerner, and J. Burge, “Certification of a null corrector via a diamond turned asphere: design and implementation,” Proc. SPIE 3749, 284–285 (1999).

Wang, C. X.

C. X. Wang and F. Wu, “Research on testing the null corrector using computer-generated holograms,” Proc. SPIE 4924, 270–276 (2002).

Wu, F.

C. X. Wang and F. Wu, “Research on testing the null corrector using computer-generated holograms,” Proc. SPIE 4924, 270–276 (2002).

Zehnder, R.

P. Mallik, R. Zehnder, and J. Burge, “Absolute calibration of null correctors using twin computer-generated holograms,” Proc. SPIE, 6292, 62920H (2006).

R. Zehnder, J. Burge, and C. Zhao, “Use of computer generated holograms for alignment of complex null correctors,” Proc. SPIE 6273, 62732S (2006).

Zhao, C.

R. Zehnder, J. Burge, and C. Zhao, “Use of computer generated holograms for alignment of complex null correctors,” Proc. SPIE 6273, 62732S (2006).

Appl. Opt.

Opt. Eng.

I. A. Palusinski and J. M. Sasian, “Sag and phase descriptions for null corrector certifiers,” Opt. Eng. 43, 697–701 (2004).
[CrossRef]

Proc. SPIE

J. M. Sasian, S. A. Lerner, and J. Burge, “Certification of a null corrector via a diamond turned asphere: design and implementation,” Proc. SPIE 3749, 284–285 (1999).

I. A. Neil, “Optical design dependence on technology development,” Proc. SPIE 7428, 742802 (2009).

R. Pursel, “Null testing of a f/0.6 concave aspheric surface,” Proc. SPIE 2263, 210–217 (1994).

R. Zehnder, J. Burge, and C. Zhao, “Use of computer generated holograms for alignment of complex null correctors,” Proc. SPIE 6273, 62732S (2006).

J. Burge, “A null test for null correctors: error analysis,” Proc. SPIE 1993, 86–97 (1993).

J. Burge, “Certification of null correctors for primary mirrors,” Proc. SPIE 1994, 248–259 (1994).

P. Mallik, R. Zehnder, and J. Burge, “Absolute calibration of null correctors using twin computer-generated holograms,” Proc. SPIE, 6292, 62920H (2006).

C. X. Wang and F. Wu, “Research on testing the null corrector using computer-generated holograms,” Proc. SPIE 4924, 270–276 (2002).

Other

D. Malacara, Optical Shop Testing (China Machine, 1983).

R. Kingslake, Lens Design Fundamentals, 2nd ed. (Academic, 2010).

ZEMAX Optical Design Program User’s Guide (ZEMAX Development Corporation, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Installation of infinite conjugated null test.

Fig. 2.
Fig. 2.

Installation of lens’ wavefront error test. (a) By plane wave (b) By Spherical wave.

Fig. 3.
Fig. 3.

Shape of the certifying lens.

Fig. 4.
Fig. 4.

Layout of certifier design.

Fig. 5.
Fig. 5.

Wavefront error of certification.

Tables (1)

Tables Icon

Table 1. Design Data of Certifying Lens

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

SI=SI+y4c3K(nn).
SIa=2ya4ca3K,
2(SIc+SIf)+SIa=0,
2(SIc+SIf)+2SI1=0.
SIf=0.
SI1=12SIa.
SI=[n(u+yc)]2y(unun).
r1=(n1)y4n2SI13=(1n)y4n2ya4ca3K3,
n|Q1Q2|=|OP1|+n|P1P2|.
|OP1|=r1r12y2.
|Q1Q2|=r1r12y12+ndn.
{|O2Q1|=ysinu=ysin(θθ)θ=arcsin(yr1)θ=arcsin(sinθn).
r2=(|O2Q1|+|Q1Q2|).

Metrics