Abstract

We present a polarization-coupled-input Raman oscillator, which is pumped by a 532 nm Q-switched hybrid resonator Nd:YVO4 slab second harmonic generation laser. By the polarization-coupled method, the dichroic mirror is avoided and more than 98% of the 532 nm pump energy can be coupled into the Raman oscillator. Theoretical calculations and the experimental results show that the second Stokes effect is dramatically suppressed. With this method, the pure 559 nm (P532/P559<0.7% and P589/P559<0.1%) laser output can be achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
    [CrossRef]
  2. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
    [CrossRef]
  3. R. P. Mildern, H. M. Pask, H. Ogilvy, and J. A. Piper, “Discretely tunable, all-solid-state laser in the green, yellow, and red,” Opt. Lett. 30, 1500–1502 (2005).
    [CrossRef]
  4. S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, J. Chang, S. Zhang, S. Wang, and Y. Liu, “Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal,” Opt. Express 13, 10120–10128 (2005).
    [CrossRef]
  5. R. Mildren, M. Convery, H. Pask, J. Piper, and T. Mckay, “Efficient, all-solid-state, Raman laser in the yellow, orange, and red,” Opt. Express 12, 785–790 (2004).
    [CrossRef]
  6. K. Du, D. Li, H. Zhang, P. Shi, and R. Diart, “Electro-optically Q-switched Nd:YVO4 slab laser with a high repetition rate and a short pulse width,” Opt. Lett. 28, 87–89 (2003).
    [CrossRef]
  7. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17, 569–574 (2009).
    [CrossRef]
  8. P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
    [CrossRef]
  9. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
    [CrossRef]
  10. H. Zhang, X. Liu, D. Li, P. Shi, A. Schell, C. R. Haas, and K. Du, “Near-diffraction-limited green source by frequency doubling of a diode-stack pumped Q-switched ND:YAG slab oscillator–amplifier system,” Appl. Opt. 46, 6539–6542 (2007).
    [CrossRef]

2009 (1)

2007 (2)

2005 (2)

2004 (2)

R. Mildren, M. Convery, H. Pask, J. Piper, and T. Mckay, “Efficient, all-solid-state, Raman laser in the yellow, orange, and red,” Opt. Express 12, 785–790 (2004).
[CrossRef]

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[CrossRef]

2003 (2)

1979 (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Basiev, T. T.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[CrossRef]

Cerny, P.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[CrossRef]

Chang, J.

Convery, M.

Diart, R.

Ding, S.

Du, K.

Fan, S.

Granados, E.

Haas, C. R.

Jelinkova, H.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[CrossRef]

Kaiser, W.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Laubereau, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Li, D.

Li, S.

Liu, X.

Liu, Y.

Mckay, T.

Mildern, R. P.

Mildren, R.

Ogilvy, H.

Pask, H.

Pask, H. M.

Penzkofer, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Piper, J.

Piper, J. A.

Schell, A.

Shi, P.

Spence, D. J.

Su, F.

Wang, Q.

Wang, S.

Zhang, H.

Zhang, S.

Zhang, X.

Zverev, P. G.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 692–704 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Prog. Quantum Electron. (3)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27, 3–56 (2003).
[CrossRef]

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28, 113–143 (2004).
[CrossRef]

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–140 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Conversion efficiency of the second Stokes wave in two different setups. The x axis is the intensity of the pump light. The dotted lines show the efficiency of the setup with HT532/HR559-589 rear mirrors. Their values are read from the left y axis. The solid lines show the theoretical results of our experiment setup. Their values are read from the right y axis The second Stokes conversion is strongly suppressed in our polarization-coupled-input setup.

Fig. 3.
Fig. 3.

Beam profile of the pump 532 nm light in the center of the KGW crystal.

Fig. 4.
Fig. 4.

Pulse shape of the pump light. The pulse width reads 9.5 ns.

Fig. 5.
Fig. 5.

First Stokes power P559 versus the pump power P532 in our experiment.

Fig. 6.
Fig. 6.

Spectrum of the output light on the power meter (measured by the ocean optics spectrometer HR+C1741). The inset shows the spectrum around the second Stokes wave.

Fig. 7.
Fig. 7.

Far-field profile of the first Stokes light.

Fig. 8.
Fig. 8.

Pulse shape of the first Stokes light. The pulse width is 8.1 ns.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dIL±dz=g0IL±(I1++I1)αLIL±,dI1±dz=ω1ω0g0I1±[(IL++IL)(I2++I2)]α1I1±,dI2±dz=ω2ω0g0I2±[(I1++I1)(I3++I3)]α2I2±,dI3±dz=ω3ω0g0I1±(I2++I2)α3I3±,
IL+(0)=TLIpump,
IL(l)=RoLIL+(l),
Ii+(0)=RbiIi(0),
Ii(l)=RoiIi+(l),(i=1,2,3).

Metrics