Abstract

An optical properties extraction algorithm is developed based on enhanced Huygens–Fresnel light propagation theorem, to extract the scattering coefficient of a specific region in an optical coherence tomography (OCT) image. The aim is to quantitatively analyze the OCT images. The algorithm is evaluated using a set of phantoms with different concentrations of scatterers, designed based on Mie theory. The algorithm is then used to analyze basal cell carcinoma and healthy eyelid tissues, demonstrating distinguishable differences in the scattering coefficient between these tissues. In this study, we have taken advantage of the simplification introduced by the utilization of a dynamic focus OCT system. This eliminates the need to deconvolve the reflectivity profile with the confocal gate profile, as the sensitivity of the OCT system is constant throughout the axial range.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
    [CrossRef]
  2. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Wave Propagation Through Random Media (Springer, 1989), Vol. 4.
  3. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).
  4. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971).
    [CrossRef]
  5. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  6. H. T. Yura and S. G. Hanson, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A 4, 1931–1948 (1987).
    [CrossRef]
  7. H. T. Yura and S. G. Hanson, “Second-order statistics for wave propagation through complex optical systems,” J. Opt. Soc. Am. A 6, 564–575 (1989).
    [CrossRef]
  8. H. T. Yura, L. Thrane, and P. E. Andersen, “Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium,” J. Opt. Soc. Am. A 17, 2464–2474 (2000).
    [CrossRef]
  9. A. E. Siegman, Lasers (University Science Books, 1986).
  10. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  11. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004).
    [CrossRef]
  12. D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).
    [CrossRef]
  13. J. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
    [CrossRef]
  14. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32, 6032–6042 (1993).
    [CrossRef]
  15. J. M. Schmitt, A. Knüttel, A. S. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
    [CrossRef]
  16. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [CrossRef]
  17. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995).
    [CrossRef]
  18. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
    [CrossRef]
  19. Y. Pan, R. Birngruber, and R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt. 36, 2979–2983 (1997).
    [CrossRef]
  20. P. E. Andersen, L. Thrane, H. T. Yura, A. Tycho, T. M. Jorgensen, and M. H. Frosz, “Advanced modelling of optical coherence tomography systems,” Phys. Med. Biol. 49, 1307–1327 (2004).
    [CrossRef]
  21. L. Thrane, “Optical coherence tomography: modeling and applications,” Ph.D. dissertation (Risø National Laboratory, 2001).
  22. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004).
    [CrossRef]
  23. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979).
    [CrossRef]
  24. I. Dror, A. Sandrov, and N. S. Kopeika, “Experimental investigation of the influence of the relative position of the scattering layer on image quality: the shower curtain effect,” Appl. Opt. 37, 6495–6499 (1998).
    [CrossRef]
  25. M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Podolenau, “Optimization of excitation of fiber Fabry–Perot tunable filters used in swept sources for optical coherence tomography using simulated annealing algorithm,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
    [CrossRef]
  26. J. Pujol, “The solution of nonlinear inverse problems and the Levenberg–Marquardt method,” Geophysics 72, W1–W16 (2007).
    [CrossRef]
  27. M. Hughes, and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
    [CrossRef]
  28. M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).
  29. M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
    [CrossRef]
  30. M. Avanaki, “Image enhancement algorithms and system optimization for optical coherence tomography,” Ph.D. dissertation (University of Kent, 2011).
  31. A. Hojjatoleslami and M. R. Nasiriavanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt. 51, 4927–4935 (2012).
    [CrossRef]
  32. M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of the International Conference on Microscopy, Microscience 2010 (Royal Microscopy Society, 2010), p. 152.
  33. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 2010).
  34. W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836 (1979).
    [CrossRef]
  35. M. R. N. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
    [CrossRef]
  36. S. Saeed, “Lookingbill and Marks’ principles of dermatology,” Am. J. Dermatopathol. 29, 496–497 (2007).
    [CrossRef]
  37. W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]

2013

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Podolenau, “Optimization of excitation of fiber Fabry–Perot tunable filters used in swept sources for optical coherence tomography using simulated annealing algorithm,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

2012

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

A. Hojjatoleslami and M. R. Nasiriavanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt. 51, 4927–4935 (2012).
[CrossRef]

2011

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

2009

M. R. N. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

M. Hughes, and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

2007

S. Saeed, “Lookingbill and Marks’ principles of dermatology,” Am. J. Dermatopathol. 29, 496–497 (2007).
[CrossRef]

J. Pujol, “The solution of nonlinear inverse problems and the Levenberg–Marquardt method,” Geophysics 72, W1–W16 (2007).
[CrossRef]

2004

2003

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).
[CrossRef]

2000

1998

1997

1995

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995).
[CrossRef]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
[CrossRef]

1994

J. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef]

1993

J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32, 6032–6042 (1993).
[CrossRef]

J. M. Schmitt, A. Knüttel, A. S. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[CrossRef]

1990

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989

1987

1979

H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979).
[CrossRef]

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836 (1979).
[CrossRef]

1971

Aber, A.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

Andersen, C.

Andersen, C. B.

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).
[CrossRef]

Andersen, P.

Andersen, P. E.

P. E. Andersen, L. Thrane, H. T. Yura, A. Tycho, T. M. Jorgensen, and M. H. Frosz, “Advanced modelling of optical coherence tomography systems,” Phys. Med. Biol. 49, 1307–1327 (2004).
[CrossRef]

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).
[CrossRef]

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
[CrossRef]

H. T. Yura, L. Thrane, and P. E. Andersen, “Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium,” J. Opt. Soc. Am. A 17, 2464–2474 (2000).
[CrossRef]

Andersson-Engels, S.

Avanaki, M.

M. Avanaki, “Image enhancement algorithms and system optimization for optical coherence tomography,” Ph.D. dissertation (University of Kent, 2011).

Avanaki, M. R. N.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Podolenau, “Optimization of excitation of fiber Fabry–Perot tunable filters used in swept sources for optical coherence tomography using simulated annealing algorithm,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

M. R. N. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of the International Conference on Microscopy, Microscience 2010 (Royal Microscopy Society, 2010), p. 152.

Birngruber, R.

Bohren, C. F.

C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 2010).

Bonner, R. F.

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995).
[CrossRef]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
[CrossRef]

J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32, 6032–6042 (1993).
[CrossRef]

J. M. Schmitt, A. Knüttel, A. S. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Bradu, A.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Podolenau, “Optimization of excitation of fiber Fabry–Perot tunable filters used in swept sources for optical coherence tomography using simulated annealing algorithm,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

Braudo, A.

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of the International Conference on Microscopy, Microscience 2010 (Royal Microscopy Society, 2010), p. 152.

Cheong, W.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cleveland, W. S.

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836 (1979).
[CrossRef]

Dror, I.

Eckhaus, M.

J. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef]

Engelhardt, R.

Frosz, M.

Frosz, M. H.

P. E. Andersen, L. Thrane, H. T. Yura, A. Tycho, T. M. Jorgensen, and M. H. Frosz, “Advanced modelling of optical coherence tomography systems,” Phys. Med. Biol. 49, 1307–1327 (2004).
[CrossRef]

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).
[CrossRef]

Gandjbakhche, A. S.

J. M. Schmitt, A. Knüttel, A. S. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Hansen, P.

Hansen, P. R.

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).
[CrossRef]

Hanson, S. G.

Hojjatoleslami, A.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Podolenau, “Optimization of excitation of fiber Fabry–Perot tunable filters used in swept sources for optical coherence tomography using simulated annealing algorithm,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

A. Hojjatoleslami and M. R. Nasiriavanaki, “OCT skin image enhancement through attenuation compensation,” Appl. Opt. 51, 4927–4935 (2012).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of the International Conference on Microscopy, Microscience 2010 (Royal Microscopy Society, 2010), p. 152.

Hojjatoleslami, S.

M. R. N. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

Hojjatoleslami, S. A.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

Huffmann, D. R.

C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 2010).

Hughes, M.

M. Hughes, and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).

Jones, C.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

Jorgensen, T. M.

P. E. Andersen, L. Thrane, H. T. Yura, A. Tycho, T. M. Jorgensen, and M. H. Frosz, “Advanced modelling of optical coherence tomography systems,” Phys. Med. Biol. 49, 1307–1327 (2004).
[CrossRef]

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).
[CrossRef]

Knuttel, A.

J. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef]

Knüttel, A.

J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32, 6032–6042 (1993).
[CrossRef]

J. M. Schmitt, A. Knüttel, A. S. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[CrossRef]

Kopeika, N. S.

Kravtsov, Y. A.

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Wave Propagation Through Random Media (Springer, 1989), Vol. 4.

Levitz, D.

Lutomirski, R. F.

Nasiriavanaki, M. R.

Nasiri-Avanaki, M. R. N.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

Pan, Y.

Podoleanu, A.

M. R. N. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

Podoleanu, A. G.

M. Hughes, and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

Podoleanu, A. Gh.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of the International Conference on Microscopy, Microscience 2010 (Royal Microscopy Society, 2010), p. 152.

Podolenau, A.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Podolenau, “Optimization of excitation of fiber Fabry–Perot tunable filters used in swept sources for optical coherence tomography using simulated annealing algorithm,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

Prahl, S.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Pujol, J.

J. Pujol, “The solution of nonlinear inverse problems and the Levenberg–Marquardt method,” Geophysics 72, W1–W16 (2007).
[CrossRef]

Ribeiro, A. B. L.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Podolenau, “Optimization of excitation of fiber Fabry–Perot tunable filters used in swept sources for optical coherence tomography using simulated annealing algorithm,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

Rytov, S. M.

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Wave Propagation Through Random Media (Springer, 1989), Vol. 4.

Saeed, S.

S. Saeed, “Lookingbill and Marks’ principles of dermatology,” Am. J. Dermatopathol. 29, 496–497 (2007).
[CrossRef]

Sandrov, A.

Schmitt, J.

J. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995).
[CrossRef]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
[CrossRef]

J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32, 6032–6042 (1993).
[CrossRef]

J. M. Schmitt, A. Knüttel, A. S. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[CrossRef]

Schofield, J.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

Schofield, J. B.

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Sira, M.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

Swartling, J.

Tatarskii, V. I.

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Wave Propagation Through Random Media (Springer, 1989), Vol. 4.

Thrane, L.

D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004).
[CrossRef]

D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004).
[CrossRef]

P. E. Andersen, L. Thrane, H. T. Yura, A. Tycho, T. M. Jorgensen, and M. H. Frosz, “Advanced modelling of optical coherence tomography systems,” Phys. Med. Biol. 49, 1307–1327 (2004).
[CrossRef]

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).
[CrossRef]

H. T. Yura, L. Thrane, and P. E. Andersen, “Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium,” J. Opt. Soc. Am. A 17, 2464–2474 (2000).
[CrossRef]

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
[CrossRef]

L. Thrane, “Optical coherence tomography: modeling and applications,” Ph.D. dissertation (Risø National Laboratory, 2001).

Trifanov, I.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Podolenau, “Optimization of excitation of fiber Fabry–Perot tunable filters used in swept sources for optical coherence tomography using simulated annealing algorithm,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

Tycho, A.

P. E. Andersen, L. Thrane, H. T. Yura, A. Tycho, T. M. Jorgensen, and M. H. Frosz, “Advanced modelling of optical coherence tomography systems,” Phys. Med. Biol. 49, 1307–1327 (2004).
[CrossRef]

Valanciunaite, J.

Welch, A.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Yadlowsky, M.

J. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef]

Yadlowsky, M. J.

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34, 5699–5707 (1995).
[CrossRef]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
[CrossRef]

Yura, H. T.

Am. J. Dermatopathol.

S. Saeed, “Lookingbill and Marks’ principles of dermatology,” Am. J. Dermatopathol. 29, 496–497 (2007).
[CrossRef]

Appl. Opt

J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt 32, 6032–6042 (1993).
[CrossRef]

Appl. Opt.

Electron. Lett.

M. Hughes, and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

Geophysics

J. Pujol, “The solution of nonlinear inverse problems and the Levenberg–Marquardt method,” Geophysics 72, W1–W16 (2007).
[CrossRef]

IEEE J. Quantum Electron.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. Podolenau, “Optimization of excitation of fiber Fabry–Perot tunable filters used in swept sources for optical coherence tomography using simulated annealing algorithm,” IEEE Photon. Technol. Lett. 25, 472–475 (2013).
[CrossRef]

J. Am. Stat. Assoc.

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836 (1979).
[CrossRef]

J. Invest. Dermatol.

M. R. N. Avanaki, M. Sira, S. A. Hojjatoleslami, A. Aber, J. B. Schofield, C. Jones, and A. Gh. Podoleanu, “Improved imaging of basal cell carcinoma using dynamic focus optical coherence tomography,” J. Invest. Dermatol. 131, S38 (2011).

J. Mod. Opt.

M. R. N. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Acta

H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979).
[CrossRef]

Opt. Express

Phys. Med. Biol.

J. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef]

P. E. Andersen, L. Thrane, H. T. Yura, A. Tycho, T. M. Jorgensen, and M. H. Frosz, “Advanced modelling of optical coherence tomography systems,” Phys. Med. Biol. 49, 1307–1327 (2004).
[CrossRef]

Proc. SPIE

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Contrast and resolution in the optical coherence microscopy of dense biological tissue,” Proc. SPIE 2387, 193–203 (1995).
[CrossRef]

D. Levitz, C. B. Andersen, M. H. Frosz, L. Thrane, P. R. Hansen, T. M. Jorgensen, and P. E. Andersen, “Assessing blood vessel abnormality via extracting scattering coefficients from OCT images,” Proc. SPIE 5140, 12–19 (2003).
[CrossRef]

J. M. Schmitt, A. Knüttel, A. S. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[CrossRef]

Other

A. E. Siegman, Lasers (University Science Books, 1986).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics: Wave Propagation Through Random Media (Springer, 1989), Vol. 4.

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

M. Avanaki, “Image enhancement algorithms and system optimization for optical coherence tomography,” Ph.D. dissertation (University of Kent, 2011).

L. Thrane, “Optical coherence tomography: modeling and applications,” Ph.D. dissertation (Risø National Laboratory, 2001).

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” in Proceedings of the International Conference on Microscopy, Microscience 2010 (Royal Microscopy Society, 2010), p. 152.

C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Demonstration of operation of the OPE algorithm. (a) OCT image of a solid phantom, composed of epoxy resin and super white polyester microspheres. The red rectangle is a homogeneous region whose optical properties are extracted. z1 and z2 are the pixel locations of the start and end of the region in z direction, (b) fitting the modeled OCT signal onto the A-line intensity profile obtained from the ROI: circle curve (red) is the averaged A-line, solid curve (purple) is the fitted curve on the averaged A-line, diamond dot curve (green) is the smoothed averaged A-line, dashed curve (blue) is the fitted curve on the smoothed averaged A-line.

Fig. 2.
Fig. 2.

DF en-Face time domain OCT (DF-OCT) setup. SLD, superluminescent laser diode; BD, balance detection photodetector unit; EI, electronic conditioning signal interface; C1,2, 2×2 coupler; CL1,2,3, collimator lens; MPC, mirror positioning controller; PC1,2, polarization controller; TS, translation stage; M, microscope objective; OF, optical fiber.

Fig. 3.
Fig. 3.

Distribution of the diameter of the super white polyester pigment particles in acetone measured by DLS.

Fig. 4.
Fig. 4.

Constructed phantoms using super white polyester microspheres embedded in the matrix material with different concentrations, C. The corresponding B-scan OCT image is placed underneath each phantom. The size of the images is 2.5mm(lateral)×1mm(in depth), measured in air.

Fig. 5.
Fig. 5.

Comparison between scattering coefficients obtained using the Mie theory and the OPE algorithm.

Fig. 6.
Fig. 6.

OCT images of eyelid skin of a 78-year-old white male (skin type II) with their corresponding histology images. (a) and (b) are two B-scan images of the tissue sample, (c) and (d) are the corresponding histology images to the OCT images shown in (a) and (b), respectively. The size of the images in (a) and (c) is 4mm(lateral)×1.5mm(in depth), measured in air, and in (b) and (d) is 2mm(lateral)×1.5mm(in depth).

Fig. 7.
Fig. 7.

Scattering coefficients calculated by the OPE algorithm from 62 regions in the B-scan images of the BCC and the adjacent healthy eyelid skin.

Tables (3)

Tables Icon

Table 1. Materials Used in the Construction of Phantoms 1–9 and the Concentration, C, of the Percentage of Polyester Microspheres in the Principle Matrix Material

Tables Icon

Table 2. Averaged Scattering Coefficients Obtained from Computer Simulations Based on Mie Theory

Tables Icon

Table 3. Scattering Coefficients Calculated from the Regions Specified in the OCT Images in Fig. 6

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i2(z)α2PRPSσbπ2wH2[e2μsz+2eμsz(1eμsz)1+wS2wH2+(1eμsz)2wH2wS2],
wH2=w02(ABf)2+(Bkw0)2,
wS2=w02(ABf)2+(Bkw0)2+(2Bkρ0)2,
ρ0(z)=3μsz×λπθrms(nBz).
12i(F(μSi,θrmsi,xdatai)ydatai)2,
C=microspheres[mg](Materialmatrix[mg])×100%.

Metrics