Abstract

We discuss effects that arise in pixels of IR focal plane arrays (FPAs) when pixel size scales down to approach the wavelength of the incident radiation. To study these effects, we perform first-principles electromagnetic simulations of pixel structures based on a mercury–cadmium–telluride photoconductor for use in FPAs. Specifically, we calculate the pixel quantum efficiency and crosstalk as pixel size scales from 16 μm, which is in the range of current detectors, down to 0.75 μm, corresponding to subwavelength detectors. Our numerical results indicate the possibility of wavelength-size (4μm) and even subwavelength-size (1μm) pixels for IR FPAs. In addition, we explore opportunities that emerge for controlling light with subwavelength structures inside FPA pixels. As an illustration, we find that the low-pass filtering effect of a metal film aperture can exemplify the impact and the possible role that wavelength-scale optics plays in very small pixels.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
    [CrossRef]
  2. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
    [CrossRef]
  3. L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
    [CrossRef]
  4. C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).
    [CrossRef]
  5. H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.
  6. P. B. Catrysse and B. A. Wandell, “Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld,” Proc. SPIE 5678, 1–13 (2005).
    [CrossRef]
  7. P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18 μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20, 2293–2306 (2003).
    [CrossRef]
  8. P. B. Catrysse, W. J. Suh, S. H. Fan, and M. Peeters, “One-mode model for patterned metal layers inside integrated color pixels,” Opt. Lett. 29, 974–976 (2004).
    [CrossRef]
  9. C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Optical confinement methods for continued scaling of CMOS image sensor pixels,” Opt. Express 16, 20457–20470 (2008).
    [CrossRef]
  10. C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Effects of imaging lens f-number on sub-2 μm CMOS image sensor pixel performance,” Proc. SPIE 7250, 72500G (2009).
    [CrossRef]
  11. Y. J. Huo, C. C. Fesenmaier, and P. B. Catrysse, “Microlens performance limits in sub-2 μm pixel CMOS image sensors,” Opt. Express 18, 5861–5872 (2010).
    [CrossRef]
  12. R. Singh and V. Mittal, “Mercury cadmium telluride photoconductive long wave infrared linear array detectors,” Def. Sci. J. 53, 281–324 (2003).
  13. A. Rogalski, J. Antoszewski, and L. J. Faraone, “Third-generation infrared photodetector arrays,” Appl. Phys. 105, 091101 (2009).
    [CrossRef]
  14. P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610–1620(2002).
    [CrossRef]
  15. G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. Kik, eds. (Springer, 2007), Vol. 131, p. 169.
  16. W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012).
    [CrossRef]
  17. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).
  18. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (corrected) (Pergamon, 1980).

2012

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012).
[CrossRef]

2011

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).
[CrossRef]

2010

2009

A. Rogalski, J. Antoszewski, and L. J. Faraone, “Third-generation infrared photodetector arrays,” Appl. Phys. 105, 091101 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Effects of imaging lens f-number on sub-2 μm CMOS image sensor pixel performance,” Proc. SPIE 7250, 72500G (2009).
[CrossRef]

2008

C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Optical confinement methods for continued scaling of CMOS image sensor pixels,” Opt. Express 16, 20457–20470 (2008).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

2006

Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

2005

P. B. Catrysse and B. A. Wandell, “Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld,” Proc. SPIE 5678, 1–13 (2005).
[CrossRef]

2004

2003

P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18 μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20, 2293–2306 (2003).
[CrossRef]

R. Singh and V. Mittal, “Mercury cadmium telluride photoconductive long wave infrared linear array detectors,” Def. Sci. J. 53, 281–324 (2003).

2002

Agranov, G.

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. J. Faraone, “Third-generation infrared photodetector arrays,” Appl. Phys. 105, 091101 (2009).
[CrossRef]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Bellotti, E.

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).
[CrossRef]

Boettiger, U.

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (corrected) (Pergamon, 1980).

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Catrysse, P. B.

Ebbesen, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Fan, S.

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012).
[CrossRef]

G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. Kik, eds. (Springer, 2007), Vol. 131, p. 169.

Fan, S. H.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

P. B. Catrysse, W. J. Suh, S. H. Fan, and M. Peeters, “One-mode model for patterned metal layers inside integrated color pixels,” Opt. Lett. 29, 974–976 (2004).
[CrossRef]

Faraone, L. J.

A. Rogalski, J. Antoszewski, and L. J. Faraone, “Third-generation infrared photodetector arrays,” Appl. Phys. 105, 091101 (2009).
[CrossRef]

Fesenmaier, C. C.

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Ghosh, G.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Hong, C.

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.

Huo, Y.

C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Effects of imaging lens f-number on sub-2 μm CMOS image sensor pixel performance,” Proc. SPIE 7250, 72500G (2009).
[CrossRef]

C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Optical confinement methods for continued scaling of CMOS image sensor pixels,” Opt. Express 16, 20457–20470 (2008).
[CrossRef]

Huo, Y. J.

Jenkins, E.

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.

Karasev, I.

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.

Keasler, C. A.

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).
[CrossRef]

Ladd, J.

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Mauritzson, R.

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.

McKee, J.

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.

Mittal, V.

R. Singh and V. Mittal, “Mercury cadmium telluride photoconductive long wave infrared linear array detectors,” Def. Sci. J. 53, 281–324 (2003).

Palik, E. D.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Peeters, M.

Quinlin, W.

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.

Rhodes, H.

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.

Rogalski, A.

A. Rogalski, J. Antoszewski, and L. J. Faraone, “Third-generation infrared photodetector arrays,” Appl. Phys. 105, 091101 (2009).
[CrossRef]

Shin, W.

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012).
[CrossRef]

Singh, R.

R. Singh and V. Mittal, “Mercury cadmium telluride photoconductive long wave infrared linear array detectors,” Def. Sci. J. 53, 281–324 (2003).

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Suh, W. J.

Veronis, G.

Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. Kik, eds. (Springer, 2007), Vol. 131, p. 169.

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Wandell, B. A.

White, J. S.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (corrected) (Pergamon, 1980).

Yu, Z. F.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Appl. Phys.

A. Rogalski, J. Antoszewski, and L. J. Faraone, “Third-generation infrared photodetector arrays,” Appl. Phys. 105, 091101 (2009).
[CrossRef]

Appl. Phys. Lett.

Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett. 99, 091109 (2011).
[CrossRef]

Def. Sci. J.

R. Singh and V. Mittal, “Mercury cadmium telluride photoconductive long wave infrared linear array detectors,” Def. Sci. J. 53, 281–324 (2003).

J. Comput. Phys.

W. Shin and S. Fan, “Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers,” J. Comput. Phys. 231, 3406–3431 (2012).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Nat. Photonics

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

P. B. Catrysse and B. A. Wandell, “Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld,” Proc. SPIE 5678, 1–13 (2005).
[CrossRef]

C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Effects of imaging lens f-number on sub-2 μm CMOS image sensor pixel performance,” Proc. SPIE 7250, 72500G (2009).
[CrossRef]

Other

G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. Kik, eds. (Springer, 2007), Vol. 131, p. 169.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (corrected) (Pergamon, 1980).

H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” in IEEE Workshop on Microelectronics and Electron Devices (IEEE, 2004), pp. 7–18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Hg1xCdxTe (MCT) photoconductive pixel for use in IR FPAs. Cross section of the pixel structure comprising an MCT layer with gold contacts on a sapphire substrate. The entire pixel structure typically measures 20–50 μm laterally and 4–10 μm vertically.

Fig. 2.
Fig. 2.

Electric field profile inside an MCT photoconductive pixel (10 μm thick MCT layer, 16 μm wide detector, and 1 μm thick gold contacts). The fields are due to normally incident, transverse-electrically (TE) polarized radiation at a wavelength of (a) 4 μm and (b) 10 μm. Bright areas correspond to large field magnitudes and dark areas to small field magnitudes.

Fig. 3.
Fig. 3.

QE model for an MCT photoconductive FPA pixel. QE is based on a simple device model where collection efficiency is assumed to be unity in the MCT volume below the active area of the detector, and zero elsewhere.

Fig. 4.
Fig. 4.

QE for FPA pixels with a detector width (contact separation) ranging from 0.75 to 16 μm. (a) QE as a function of wavelength. The dashed gray curve, from an independent thin-film calculation, represents absorption in an MCT layer without gold contacts. (b) Mean QE over the wavelength range of 4–10 μm as a function of detector width. The dashed gray curve represents mean absorption in an MCT layer without gold contacts.

Fig. 5.
Fig. 5.

Optical crosstalk model for an MCT photoconductive FPA pixel. Optical crosstalk can be estimated by integrating the absorption in a volume corresponding to a neighboring pixel, but covered under the gold layer. We assume for simplicity that the pixel pitch is twice the detector width.

Fig. 6.
Fig. 6.

Crosstalk for FPA pixels with a detector width ranging from 16 to 0.75 μm. The pixel pitch is taken to be twice the detector width. (a) Spectral crosstalk QE given as a function of wavelength, and (b) mean crosstalk QE over the wavelength range of 4–10 μm as a function of detector width.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pinc=AdetS⃗inc·n⃗dA=AdetZ0εincEinc2cosθ,
Pabs=VdetσE2dV=ωε0Im(εdet)VdetE2dV,
η=PabsPinc=ωε0Z0Im(εdet)εincAdetVdet(EEinc)2dV,

Metrics