Abstract

We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Christian, R. J. Blackeslee, and S. J. Goodman, “The detection of lightning from geostationary orbit,” J. Geophys. Res. 94, 13329–13337 (1989).
    [CrossRef]
  2. D. J. Boccippio and H. J. Christian, “Optical detection of lightning from space,” in Proceedings of the 11th International Conference on Atmospheric Electricity, (1999), pp. 746–749.
  3. S. Goodman, R. Blackeslee, and W. Koshak, “Geostationary lightning mapper for GOES-R and beyond,” presented at Fifth GOES Users’ Conference, New Orleans, Louisiana, January 23–24, (2008).
  4. MTG mission requirement document, EUM/MTG/SPE/06/0011 v2c, 6.3.3 Lightning imagery mission, (2007).
  5. Large format APS detectors with on-chip intelligence for lightning imaging SOW=TEC-MME/2007/272/IZ, issue 1, rev0, 22.01.2008.
  6. J. Leijtens, A. Theuwissen, and P. Magnan, “Smart FPA’s: are they worth the effort ?” Proc. SPIE 6361, 636115 (2006).
    [CrossRef]
  7. A. Moini, Vision Chips (Kluwer, 1999).
  8. J. Ohta, Smart CMOS Image Sensors and Applications (CRC, 2007).
  9. L. Tommasi, G. Basile, A. Romoli, and M. Stagi, “Design and performance of the lightning imager for the Meteosat third generation,” in Proceedings of ESA/CNES ICSO (ESA, 2006), pp. 60.1–60.6.
  10. ESA’s Invitation To Tender, “Large format APS detector with on-chip intelligence for lightning imaging,” AO/1-5572/08/NI/EM.
  11. E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Devices 44, 1689–1698 (1997).
    [CrossRef]
  12. U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-Cummings, “Temporal change threshold detection imager,” in IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC (IEEE, 2005), vol. 1, pp. 362–363.
  13. D. Kim, Z. Fu, J. H. Park, and E. Culurciello, “A 1 mW CMOS temporal-difference AER sensor for wireless sensor networks,” IEEE Trans. Electron Devices 56, 2586–2593 (2009).
    [CrossRef]

2009 (1)

D. Kim, Z. Fu, J. H. Park, and E. Culurciello, “A 1 mW CMOS temporal-difference AER sensor for wireless sensor networks,” IEEE Trans. Electron Devices 56, 2586–2593 (2009).
[CrossRef]

2006 (1)

J. Leijtens, A. Theuwissen, and P. Magnan, “Smart FPA’s: are they worth the effort ?” Proc. SPIE 6361, 636115 (2006).
[CrossRef]

1997 (1)

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Devices 44, 1689–1698 (1997).
[CrossRef]

1989 (1)

H. J. Christian, R. J. Blackeslee, and S. J. Goodman, “The detection of lightning from geostationary orbit,” J. Geophys. Res. 94, 13329–13337 (1989).
[CrossRef]

Basile, G.

L. Tommasi, G. Basile, A. Romoli, and M. Stagi, “Design and performance of the lightning imager for the Meteosat third generation,” in Proceedings of ESA/CNES ICSO (ESA, 2006), pp. 60.1–60.6.

Blackeslee, R.

S. Goodman, R. Blackeslee, and W. Koshak, “Geostationary lightning mapper for GOES-R and beyond,” presented at Fifth GOES Users’ Conference, New Orleans, Louisiana, January 23–24, (2008).

Blackeslee, R. J.

H. J. Christian, R. J. Blackeslee, and S. J. Goodman, “The detection of lightning from geostationary orbit,” J. Geophys. Res. 94, 13329–13337 (1989).
[CrossRef]

Boccippio, D. J.

D. J. Boccippio and H. J. Christian, “Optical detection of lightning from space,” in Proceedings of the 11th International Conference on Atmospheric Electricity, (1999), pp. 746–749.

Cauwenberghs, G.

U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-Cummings, “Temporal change threshold detection imager,” in IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC (IEEE, 2005), vol. 1, pp. 362–363.

Choi, E.

U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-Cummings, “Temporal change threshold detection imager,” in IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC (IEEE, 2005), vol. 1, pp. 362–363.

Christian, H. J.

H. J. Christian, R. J. Blackeslee, and S. J. Goodman, “The detection of lightning from geostationary orbit,” J. Geophys. Res. 94, 13329–13337 (1989).
[CrossRef]

D. J. Boccippio and H. J. Christian, “Optical detection of lightning from space,” in Proceedings of the 11th International Conference on Atmospheric Electricity, (1999), pp. 746–749.

Clapp, M.

U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-Cummings, “Temporal change threshold detection imager,” in IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC (IEEE, 2005), vol. 1, pp. 362–363.

Culurciello, E.

D. Kim, Z. Fu, J. H. Park, and E. Culurciello, “A 1 mW CMOS temporal-difference AER sensor for wireless sensor networks,” IEEE Trans. Electron Devices 56, 2586–2593 (2009).
[CrossRef]

Etienne-Cummings, R.

U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-Cummings, “Temporal change threshold detection imager,” in IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC (IEEE, 2005), vol. 1, pp. 362–363.

Fossum, E. R.

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Devices 44, 1689–1698 (1997).
[CrossRef]

Fu, Z.

D. Kim, Z. Fu, J. H. Park, and E. Culurciello, “A 1 mW CMOS temporal-difference AER sensor for wireless sensor networks,” IEEE Trans. Electron Devices 56, 2586–2593 (2009).
[CrossRef]

Goodman, S.

S. Goodman, R. Blackeslee, and W. Koshak, “Geostationary lightning mapper for GOES-R and beyond,” presented at Fifth GOES Users’ Conference, New Orleans, Louisiana, January 23–24, (2008).

Goodman, S. J.

H. J. Christian, R. J. Blackeslee, and S. J. Goodman, “The detection of lightning from geostationary orbit,” J. Geophys. Res. 94, 13329–13337 (1989).
[CrossRef]

Kim, D.

D. Kim, Z. Fu, J. H. Park, and E. Culurciello, “A 1 mW CMOS temporal-difference AER sensor for wireless sensor networks,” IEEE Trans. Electron Devices 56, 2586–2593 (2009).
[CrossRef]

Koshak, W.

S. Goodman, R. Blackeslee, and W. Koshak, “Geostationary lightning mapper for GOES-R and beyond,” presented at Fifth GOES Users’ Conference, New Orleans, Louisiana, January 23–24, (2008).

Leijtens, J.

J. Leijtens, A. Theuwissen, and P. Magnan, “Smart FPA’s: are they worth the effort ?” Proc. SPIE 6361, 636115 (2006).
[CrossRef]

Magnan, P.

J. Leijtens, A. Theuwissen, and P. Magnan, “Smart FPA’s: are they worth the effort ?” Proc. SPIE 6361, 636115 (2006).
[CrossRef]

Mallik, U.

U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-Cummings, “Temporal change threshold detection imager,” in IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC (IEEE, 2005), vol. 1, pp. 362–363.

Moini, A.

A. Moini, Vision Chips (Kluwer, 1999).

Ohta, J.

J. Ohta, Smart CMOS Image Sensors and Applications (CRC, 2007).

Park, J. H.

D. Kim, Z. Fu, J. H. Park, and E. Culurciello, “A 1 mW CMOS temporal-difference AER sensor for wireless sensor networks,” IEEE Trans. Electron Devices 56, 2586–2593 (2009).
[CrossRef]

Romoli, A.

L. Tommasi, G. Basile, A. Romoli, and M. Stagi, “Design and performance of the lightning imager for the Meteosat third generation,” in Proceedings of ESA/CNES ICSO (ESA, 2006), pp. 60.1–60.6.

Stagi, M.

L. Tommasi, G. Basile, A. Romoli, and M. Stagi, “Design and performance of the lightning imager for the Meteosat third generation,” in Proceedings of ESA/CNES ICSO (ESA, 2006), pp. 60.1–60.6.

Theuwissen, A.

J. Leijtens, A. Theuwissen, and P. Magnan, “Smart FPA’s: are they worth the effort ?” Proc. SPIE 6361, 636115 (2006).
[CrossRef]

Tommasi, L.

L. Tommasi, G. Basile, A. Romoli, and M. Stagi, “Design and performance of the lightning imager for the Meteosat third generation,” in Proceedings of ESA/CNES ICSO (ESA, 2006), pp. 60.1–60.6.

IEEE Trans. Electron Devices (2)

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Devices 44, 1689–1698 (1997).
[CrossRef]

D. Kim, Z. Fu, J. H. Park, and E. Culurciello, “A 1 mW CMOS temporal-difference AER sensor for wireless sensor networks,” IEEE Trans. Electron Devices 56, 2586–2593 (2009).
[CrossRef]

J. Geophys. Res. (1)

H. J. Christian, R. J. Blackeslee, and S. J. Goodman, “The detection of lightning from geostationary orbit,” J. Geophys. Res. 94, 13329–13337 (1989).
[CrossRef]

Proc. SPIE (1)

J. Leijtens, A. Theuwissen, and P. Magnan, “Smart FPA’s: are they worth the effort ?” Proc. SPIE 6361, 636115 (2006).
[CrossRef]

Other (9)

A. Moini, Vision Chips (Kluwer, 1999).

J. Ohta, Smart CMOS Image Sensors and Applications (CRC, 2007).

L. Tommasi, G. Basile, A. Romoli, and M. Stagi, “Design and performance of the lightning imager for the Meteosat third generation,” in Proceedings of ESA/CNES ICSO (ESA, 2006), pp. 60.1–60.6.

ESA’s Invitation To Tender, “Large format APS detector with on-chip intelligence for lightning imaging,” AO/1-5572/08/NI/EM.

D. J. Boccippio and H. J. Christian, “Optical detection of lightning from space,” in Proceedings of the 11th International Conference on Atmospheric Electricity, (1999), pp. 746–749.

S. Goodman, R. Blackeslee, and W. Koshak, “Geostationary lightning mapper for GOES-R and beyond,” presented at Fifth GOES Users’ Conference, New Orleans, Louisiana, January 23–24, (2008).

MTG mission requirement document, EUM/MTG/SPE/06/0011 v2c, 6.3.3 Lightning imagery mission, (2007).

Large format APS detectors with on-chip intelligence for lightning imaging SOW=TEC-MME/2007/272/IZ, issue 1, rev0, 22.01.2008.

U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-Cummings, “Temporal change threshold detection imager,” in IEEE International Solid-State Circuits Conference, Digest of Technical Papers, ISSCC (IEEE, 2005), vol. 1, pp. 362–363.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Lightning detector instrument will continuously observe over 80% of the Earth disk and will provide a real-time lightning detection and geolocalization.

Fig. 2.
Fig. 2.

Lightning flash shape. The entire lightning energy is emitted within a 2 ms interval.

Fig. 3.
Fig. 3.

Demonstrator block diagram. The detector is constituted of two main parts: the triggered event (TE) processing functions that provide the detection and the localization of an optical pulse and the RAD functions that provide the RAD value measurement.

Fig. 4.
Fig. 4.

Three simultaneous tasks of the demonstrator. (a) Detection of events. (b) Readout of event RAD values that pass the filters of reduction of false alarms and the AOI (random access). (c) Background measurement (random access).

Fig. 5.
Fig. 5.

Pixel processing functions.

Fig. 6.
Fig. 6.

Frame-to-frame difference operator. (a) Clamp circuit and (b) switched-capacitor amplifier.

Fig. 7.
Fig. 7.

Pixel architecture.

Fig. 8.
Fig. 8.

Detailed layout of pixel.

Fig. 9.
Fig. 9.

TE management functions. This system part is used to localize in rolling readout mode the first and the last TE on each row of the pixel array.

Fig. 10.
Fig. 10.

Spatial filter applied to TE flags. In this example, two TE flags are activated in Pair_1. So, the TE_OUT<1> is set to high. If no pair contains two active flags the TE_OUT<0> stay to low. This filter is identical for all TE_IN.

Fig. 11.
Fig. 11.

RAD readout circuit overview. To maximize the number of tracking windows, four pixel rows that correspond to the size of the AOI window surrounding a pixel that has detected an event are simultaneously sampled in the column readout circuit.

Fig. 12.
Fig. 12.

Chip microphotograph.

Fig. 13.
Fig. 13.

Full frame image captured by the demonstrator.

Fig. 14.
Fig. 14.

Photon transfer curve of demonstrator.

Fig. 15.
Fig. 15.

TE management system validation. (a) No LED beam is focused on the pixel array: no TE is identified. (b) A LED beam is focused on 32 columns of the entire pixel array: the beam edge is identified.

Fig. 16.
Fig. 16.

Pixel comparator offset mismatching. (a) The average value of the pixel detection gain is 13 with a standard variation of 0.75. (b) The standard variation of the computed TE offset is 17 mV (at 1 sigma).

Fig. 17.
Fig. 17.

TE threshold detection (offsets). This offset allows the detection of 10 mV pulses at the photodiode level over a background whitout false alarm.

Tables (3)

Tables Icon

Table 1. Specifications of Lightning Activity Observation Instruments

Tables Icon

Table 2. Demonstrator and Mission Requirements

Tables Icon

Table 3. Performance Summary

Metrics