Abstract

A shock wave (SW) is characterized as a large pressure fluctuation that typically lasts only a few milliseconds. On the battlefield, SWs pose a serious threat to soldiers who are exposed to explosions, which may lead to blast-induced traumatic brain injuries. SWs can also be used beneficially and have been applied to a variety of medical treatments due to their unique interaction with tissues and cells. Consequently, it is important to have sensors that can quantify SW dynamics in order to better understand the physical interaction between body tissue and the incident acoustic wave. In this paper, the ultrafast fiber-optic sensor based on the Fabry–Perot interferometric principle was designed and four such sensors were fabricated to quantify a blast event within different media, simultaneously. The compact design of the fiber-optic sensor allows for a high degree of spatial resolution when capturing the wavefront of the traveling SW. Several blast event experiments were conducted within different media (e.g., air, rubber membrane, and water) to evaluate the sensor’s performance. This research revealed valuable knowledge for further study of SW behavior and SW-related applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Okie, “Traumatic brain injury in the war zone,” N. Engl. J. Med. 352, 2043–2047 (2005).
    [CrossRef]
  2. R. G. De Palma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352, 1335–1342 (2005).
    [CrossRef]
  3. A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
    [CrossRef]
  4. S.-M. Liang and J.-C. Yuan, “Numerical simulation of blast-wave propagation in a small two-medium duct,” J. Mech. 25, 313–322 (2009).
    [CrossRef]
  5. J. M. Wightman and S. L. Gladish, “Explosions and blast injuries,” Ann. Emerg. Med. 37, 664–678 (2001).
    [CrossRef]
  6. W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
    [CrossRef]
  7. X. Zou, N. Wu, Y. Tian, H. Zhang, C. Niezrecki, and X. Wang, “Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor,” Proc. SPIE 8028, 802806 (2011).
    [CrossRef]
  8. N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19, 10797–10804 (2011).
    [CrossRef]
  9. K. Ikeda, K. Tomita, and K. Takayama, “Application of extracorporeal shock wave on bone: preliminary report,” J. Trauma Acute Care Surg. 47, 946–950 (1999).
    [CrossRef]
  10. M. Delius, “Medical applications and bioeffects of extracorporeal shock waves,” Shock Waves 4, 55–72 (1994).
    [CrossRef]
  11. C. Chaussy, W. Brendel, and E. Schmiedt, “Extracorporeally induced destruction of kidney stones by shock waves,” Lancet 316, 1265–1268 (1980).
    [CrossRef]
  12. W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry–Perot cavity length control using angle polished fiber,” Opt. Express 17, 16613–16618 (2009).
    [CrossRef]
  13. S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
    [CrossRef]
  14. W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
    [CrossRef]
  15. W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struc. 6, 530–543 (1997).
    [CrossRef]
  16. X. Zou, A. Chao, Y. Tian, N. Wu, H. Zhang, T.-Y. Yu, and X. Wang, “An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors,” Measurement 45, 1077–1082 (2012).
    [CrossRef]
  17. N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23, 055102 (2012).
    [CrossRef]
  18. X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51, 134–139 (2013).
    [CrossRef]
  19. S. Ridah, “Shock waves in water,” J. Appl. Phys. 64, 152–158 (1988).
    [CrossRef]
  20. W. Merzkirch and W. Erdmann, “Measurement of shock wave velocity using the Doppler principle,” Appl. Phys. A 4, 363–366 (1974).
    [CrossRef]

2013 (1)

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51, 134–139 (2013).
[CrossRef]

2012 (2)

X. Zou, A. Chao, Y. Tian, N. Wu, H. Zhang, T.-Y. Yu, and X. Wang, “An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors,” Measurement 45, 1077–1082 (2012).
[CrossRef]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23, 055102 (2012).
[CrossRef]

2011 (3)

A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
[CrossRef]

X. Zou, N. Wu, Y. Tian, H. Zhang, C. Niezrecki, and X. Wang, “Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor,” Proc. SPIE 8028, 802806 (2011).
[CrossRef]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19, 10797–10804 (2011).
[CrossRef]

2009 (2)

2007 (1)

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

2006 (1)

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

2005 (2)

S. Okie, “Traumatic brain injury in the war zone,” N. Engl. J. Med. 352, 2043–2047 (2005).
[CrossRef]

R. G. De Palma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352, 1335–1342 (2005).
[CrossRef]

2001 (1)

J. M. Wightman and S. L. Gladish, “Explosions and blast injuries,” Ann. Emerg. Med. 37, 664–678 (2001).
[CrossRef]

2000 (1)

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

1999 (1)

K. Ikeda, K. Tomita, and K. Takayama, “Application of extracorporeal shock wave on bone: preliminary report,” J. Trauma Acute Care Surg. 47, 946–950 (1999).
[CrossRef]

1997 (1)

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struc. 6, 530–543 (1997).
[CrossRef]

1994 (1)

M. Delius, “Medical applications and bioeffects of extracorporeal shock waves,” Shock Waves 4, 55–72 (1994).
[CrossRef]

1988 (1)

S. Ridah, “Shock waves in water,” J. Appl. Phys. 64, 152–158 (1988).
[CrossRef]

1980 (1)

C. Chaussy, W. Brendel, and E. Schmiedt, “Extracorporeally induced destruction of kidney stones by shock waves,” Lancet 316, 1265–1268 (1980).
[CrossRef]

1974 (1)

W. Merzkirch and W. Erdmann, “Measurement of shock wave velocity using the Doppler principle,” Appl. Phys. A 4, 363–366 (1974).
[CrossRef]

Allen, R. M.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Armonda, R.

A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
[CrossRef]

Barton, J. S.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Brendel, W.

C. Chaussy, W. Brendel, and E. Schmiedt, “Extracorporeally induced destruction of kidney stones by shock waves,” Lancet 316, 1265–1268 (1980).
[CrossRef]

Burris, D. G.

R. G. De Palma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352, 1335–1342 (2005).
[CrossRef]

Champion, H. R.

R. G. De Palma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352, 1335–1342 (2005).
[CrossRef]

Chao, A.

X. Zou, A. Chao, Y. Tian, N. Wu, H. Zhang, T.-Y. Yu, and X. Wang, “An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors,” Measurement 45, 1077–1082 (2012).
[CrossRef]

Chaussy, C.

C. Chaussy, W. Brendel, and E. Schmiedt, “Extracorporeally induced destruction of kidney stones by shock waves,” Lancet 316, 1265–1268 (1980).
[CrossRef]

Chen, J.

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51, 134–139 (2013).
[CrossRef]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23, 055102 (2012).
[CrossRef]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19, 10797–10804 (2011).
[CrossRef]

W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry–Perot cavity length control using angle polished fiber,” Opt. Express 17, 16613–16618 (2009).
[CrossRef]

De Palma, R. G.

R. G. De Palma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352, 1335–1342 (2005).
[CrossRef]

Delius, M.

M. Delius, “Medical applications and bioeffects of extracorporeal shock waves,” Shock Waves 4, 55–72 (1994).
[CrossRef]

Djakov, V.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

Dunare, C.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

Dunare, C. C.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

Eaton, W. P.

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struc. 6, 530–543 (1997).
[CrossRef]

Erdmann, W.

W. Merzkirch and W. Erdmann, “Measurement of shock wave velocity using the Doppler principle,” Appl. Phys. A 4, 363–366 (1974).
[CrossRef]

Fitek, J.

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23, 055102 (2012).
[CrossRef]

Gander, M. J.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Gean, A. D.

A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
[CrossRef]

Gladish, S. L.

J. M. Wightman and S. L. Gladish, “Explosions and blast injuries,” Ann. Emerg. Med. 37, 664–678 (2001).
[CrossRef]

Hindle, A.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

Hodgson, M. J.

R. G. De Palma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352, 1335–1342 (2005).
[CrossRef]

Ikeda, K.

K. Ikeda, K. Tomita, and K. Takayama, “Application of extracorporeal shock wave on bone: preliminary report,” J. Trauma Acute Care Surg. 47, 946–950 (1999).
[CrossRef]

Jones, J. D. C.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Liang, S.-M.

S.-M. Liang and J.-C. Yuan, “Numerical simulation of blast-wave propagation in a small two-medium duct,” J. Mech. 25, 313–322 (2009).
[CrossRef]

MacPherson, W. N.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Maffeo, M.

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23, 055102 (2012).
[CrossRef]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19, 10797–10804 (2011).
[CrossRef]

Manley, G. T.

A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
[CrossRef]

Merzkirch, W.

W. Merzkirch and W. Erdmann, “Measurement of shock wave velocity using the Doppler principle,” Appl. Phys. A 4, 363–366 (1974).
[CrossRef]

Nakagawa, A.

A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
[CrossRef]

Niezrecki, C.

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51, 134–139 (2013).
[CrossRef]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23, 055102 (2012).
[CrossRef]

X. Zou, N. Wu, Y. Tian, H. Zhang, C. Niezrecki, and X. Wang, “Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor,” Proc. SPIE 8028, 802806 (2011).
[CrossRef]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19, 10797–10804 (2011).
[CrossRef]

W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry–Perot cavity length control using angle polished fiber,” Opt. Express 17, 16613–16618 (2009).
[CrossRef]

Ohtani, K.

A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
[CrossRef]

Okie, S.

S. Okie, “Traumatic brain injury in the war zone,” N. Engl. J. Med. 352, 2043–2047 (2005).
[CrossRef]

Owen, C. L.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Parkes, W.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

Pichugin, A. V.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

Ridah, S.

S. Ridah, “Shock waves in water,” J. Appl. Phys. 64, 152–158 (1988).
[CrossRef]

Schmiedt, E.

C. Chaussy, W. Brendel, and E. Schmiedt, “Extracorporeally induced destruction of kidney stones by shock waves,” Lancet 316, 1265–1268 (1980).
[CrossRef]

Smith, J. H.

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struc. 6, 530–543 (1997).
[CrossRef]

Stevenson, J. T. M.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

Stevenson, T.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

Takayama, K.

A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
[CrossRef]

K. Ikeda, K. Tomita, and K. Takayama, “Application of extracorporeal shock wave on bone: preliminary report,” J. Trauma Acute Care Surg. 47, 946–950 (1999).
[CrossRef]

Tian, Y.

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51, 134–139 (2013).
[CrossRef]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23, 055102 (2012).
[CrossRef]

X. Zou, A. Chao, Y. Tian, N. Wu, H. Zhang, T.-Y. Yu, and X. Wang, “An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors,” Measurement 45, 1077–1082 (2012).
[CrossRef]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19, 10797–10804 (2011).
[CrossRef]

X. Zou, N. Wu, Y. Tian, H. Zhang, C. Niezrecki, and X. Wang, “Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor,” Proc. SPIE 8028, 802806 (2011).
[CrossRef]

W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry–Perot cavity length control using angle polished fiber,” Opt. Express 17, 16613–16618 (2009).
[CrossRef]

Tominaga, T.

A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
[CrossRef]

Tomita, K.

K. Ikeda, K. Tomita, and K. Takayama, “Application of extracorporeal shock wave on bone: preliminary report,” J. Trauma Acute Care Surg. 47, 946–950 (1999).
[CrossRef]

Tsukamoto, A.

A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
[CrossRef]

Tyas, A.

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

Wang, W.

Wang, X.

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51, 134–139 (2013).
[CrossRef]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23, 055102 (2012).
[CrossRef]

X. Zou, A. Chao, Y. Tian, N. Wu, H. Zhang, T.-Y. Yu, and X. Wang, “An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors,” Measurement 45, 1077–1082 (2012).
[CrossRef]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19, 10797–10804 (2011).
[CrossRef]

X. Zou, N. Wu, Y. Tian, H. Zhang, C. Niezrecki, and X. Wang, “Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor,” Proc. SPIE 8028, 802806 (2011).
[CrossRef]

W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry–Perot cavity length control using angle polished fiber,” Opt. Express 17, 16613–16618 (2009).
[CrossRef]

Watson, A. J.

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Watson, S.

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

Wightman, J. M.

J. M. Wightman and S. L. Gladish, “Explosions and blast injuries,” Ann. Emerg. Med. 37, 664–678 (2001).
[CrossRef]

Wu, N.

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51, 134–139 (2013).
[CrossRef]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23, 055102 (2012).
[CrossRef]

X. Zou, A. Chao, Y. Tian, N. Wu, H. Zhang, T.-Y. Yu, and X. Wang, “An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors,” Measurement 45, 1077–1082 (2012).
[CrossRef]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19, 10797–10804 (2011).
[CrossRef]

X. Zou, N. Wu, Y. Tian, H. Zhang, C. Niezrecki, and X. Wang, “Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor,” Proc. SPIE 8028, 802806 (2011).
[CrossRef]

W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry–Perot cavity length control using angle polished fiber,” Opt. Express 17, 16613–16618 (2009).
[CrossRef]

Yamamoto, H.

A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
[CrossRef]

Yu, T.-Y.

X. Zou, A. Chao, Y. Tian, N. Wu, H. Zhang, T.-Y. Yu, and X. Wang, “An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors,” Measurement 45, 1077–1082 (2012).
[CrossRef]

Yuan, J.-C.

S.-M. Liang and J.-C. Yuan, “Numerical simulation of blast-wave propagation in a small two-medium duct,” J. Mech. 25, 313–322 (2009).
[CrossRef]

Zhang, H.

X. Zou, A. Chao, Y. Tian, N. Wu, H. Zhang, T.-Y. Yu, and X. Wang, “An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors,” Measurement 45, 1077–1082 (2012).
[CrossRef]

X. Zou, N. Wu, Y. Tian, H. Zhang, C. Niezrecki, and X. Wang, “Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor,” Proc. SPIE 8028, 802806 (2011).
[CrossRef]

Zou, X.

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51, 134–139 (2013).
[CrossRef]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23, 055102 (2012).
[CrossRef]

X. Zou, A. Chao, Y. Tian, N. Wu, H. Zhang, T.-Y. Yu, and X. Wang, “An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors,” Measurement 45, 1077–1082 (2012).
[CrossRef]

N. Wu, W. Wang, Y. Tian, X. Zou, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “Low-cost rapid miniature optical pressure sensors for blast wave measurements,” Opt. Express 19, 10797–10804 (2011).
[CrossRef]

X. Zou, N. Wu, Y. Tian, H. Zhang, C. Niezrecki, and X. Wang, “Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor,” Proc. SPIE 8028, 802806 (2011).
[CrossRef]

Ann. Emerg. Med. (1)

J. M. Wightman and S. L. Gladish, “Explosions and blast injuries,” Ann. Emerg. Med. 37, 664–678 (2001).
[CrossRef]

Appl. Phys. A (1)

W. Merzkirch and W. Erdmann, “Measurement of shock wave velocity using the Doppler principle,” Appl. Phys. A 4, 363–366 (1974).
[CrossRef]

J. Appl. Phys. (1)

S. Ridah, “Shock waves in water,” J. Appl. Phys. 64, 152–158 (1988).
[CrossRef]

J. Mech. (1)

S.-M. Liang and J.-C. Yuan, “Numerical simulation of blast-wave propagation in a small two-medium duct,” J. Mech. 25, 313–322 (2009).
[CrossRef]

J. Micromech. Microeng. (1)

W. Parkes, V. Djakov, J. S. Barton, S. Watson, W. N. MacPherson, J. T. M. Stevenson, and C. C. Dunare, “Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air,” J. Micromech. Microeng. 17, 1334–1342 (2007).
[CrossRef]

J. Neurotrauma (1)

A. Nakagawa, G. T. Manley, A. D. Gean, K. Ohtani, R. Armonda, A. Tsukamoto, H. Yamamoto, K. Takayama, and T. Tominaga, “Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research,” J. Neurotrauma 28, 1101–1119 (2011).
[CrossRef]

J. Trauma Acute Care Surg. (1)

K. Ikeda, K. Tomita, and K. Takayama, “Application of extracorporeal shock wave on bone: preliminary report,” J. Trauma Acute Care Surg. 47, 946–950 (1999).
[CrossRef]

Lancet (1)

C. Chaussy, W. Brendel, and E. Schmiedt, “Extracorporeally induced destruction of kidney stones by shock waves,” Lancet 316, 1265–1268 (1980).
[CrossRef]

Meas. Sci. Technol. (3)

S. Watson, W. N. MacPherson, J. S. Barton, J. D. C. Jones, A. Tyas, A. V. Pichugin, A. Hindle, W. Parkes, C. Dunare, and T. Stevenson, “Investigation of shock waves in explosive blasts using fibre optic pressure sensors,” Meas. Sci. Technol. 17, 226–231 (2006).
[CrossRef]

N. Wu, X. Zou, Y. Tian, J. Fitek, M. Maffeo, C. Niezrecki, J. Chen, and X. Wang, “An ultra-fast fiber optic pressure sensor for blast event measurements,” Meas. Sci. Technol. 23, 055102 (2012).
[CrossRef]

W. N. MacPherson, M. J. Gander, J. S. Barton, J. D. C. Jones, C. L. Owen, A. J. Watson, and R. M. Allen, “Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor,” Meas. Sci. Technol. 11, 95–102 (2000).
[CrossRef]

Measurement (1)

X. Zou, A. Chao, Y. Tian, N. Wu, H. Zhang, T.-Y. Yu, and X. Wang, “An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors,” Measurement 45, 1077–1082 (2012).
[CrossRef]

N. Engl. J. Med. (2)

S. Okie, “Traumatic brain injury in the war zone,” N. Engl. J. Med. 352, 2043–2047 (2005).
[CrossRef]

R. G. De Palma, D. G. Burris, H. R. Champion, and M. J. Hodgson, “Blast injuries,” N. Engl. J. Med. 352, 1335–1342 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

X. Zou, N. Wu, Y. Tian, C. Niezrecki, J. Chen, and X. Wang, “Rapid miniature fiber optic pressure sensors for blast wave measurements,” Opt. Lasers Eng. 51, 134–139 (2013).
[CrossRef]

Proc. SPIE (1)

X. Zou, N. Wu, Y. Tian, H. Zhang, C. Niezrecki, and X. Wang, “Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor,” Proc. SPIE 8028, 802806 (2011).
[CrossRef]

Shock Waves (1)

M. Delius, “Medical applications and bioeffects of extracorporeal shock waves,” Shock Waves 4, 55–72 (1994).
[CrossRef]

Smart Mater. Struc. (1)

W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Mater. Struc. 6, 530–543 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Cross section of the of the ultrafast FP pressure sensor.

Fig. 2.
Fig. 2.

Illustration of the fiber-optic sensor fabrication process.

Fig. 3.
Fig. 3.

Photograph of the sensor package.

Fig. 4.
Fig. 4.

Interference patterns of all fiber-optic pressure sensors. The operating wavelength of the tunable laser was chosen at 1552.3 nm.

Fig. 5.
Fig. 5.

Schematic diagram of the calibration system.

Fig. 6.
Fig. 6.

Calibration result of FPP3. The voltage from the photodetector increased/decreased corresponding to an increasing or decreasing pressure.

Fig. 7.
Fig. 7.

Schematic diagram showing the cross section of the mounted sensors for the multiple media shock tube test.

Fig. 8.
Fig. 8.

Photograph of the experiment setup. Two aluminum chambers were attached to the end of the shock tube.

Fig. 9.
Fig. 9.

SW profile that was captured by the fiber-optic sensors.

Fig. 10.
Fig. 10.

SW profile that was captured by the fiber-optic sensors and the reference sensors.

Fig. 11.
Fig. 11.

Time zoom-in SW profile from 0 to 0.4 ms.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f00=11+βα004π[E3w(1μ2)]1/2[h(d/2)2],
β=0.669εd2h,

Metrics