Abstract

High normalized delay-bandwidth product (NDBP) and wideband slow light are achieved in an alternative row of ellipse-hole photonic crystal waveguide. Two different criteria of flat ratio are adopted. Under a constant group index criterion, a high NDBP of 0.446 with a group index of 42 and a bandwidth of 16.4 nm are obtained by plane wave expansion calculations, while under a low dispersion criterion, the NDBP, group index, and bandwidth come to 0.352, 41, 13.1 nm, respectively. Low dispersion slow light propagation is numerically demonstrated by studying the relative temporal pulse-width spreading with the two-dimensional finite-difference time-domain method. As a whole, the presented results give indications about the “ultimate” possible improvement of slow light waveguide metrics by using noncircular holes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [CrossRef]
  2. F. Long, H. Tian, and Y. Ji, “A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides,” J. Lightwave Technol. 28, 1139–1143 (2010).
    [CrossRef]
  3. Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011).
    [CrossRef]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [CrossRef]
  5. X. Chen, Y. S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54  pJ/bit silicon-slot photonic crystal waveguide modulator,” Opt. Lett. 34, 602–604 (2009).
    [CrossRef]
  6. R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77, 115124 (2008).
    [CrossRef]
  7. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
    [CrossRef]
  8. M. Ar, T. Doll, J. Kovi, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
    [CrossRef]
  9. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef]
  10. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovi, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
    [CrossRef]
  11. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006).
    [CrossRef]
  12. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [CrossRef]
  13. F. Long, H. Tian, and Y. Ji, “Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes,” Appl. Opt. 49, 4808–4813 (2010).
    [CrossRef]
  14. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).
    [CrossRef]
  15. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef]
  16. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef]
  17. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010).
    [CrossRef]
  18. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
    [CrossRef]
  19. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328(2007).
    [CrossRef]
  20. F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
    [CrossRef]
  21. S. Rawal, R. Sinha, and R. M. De La Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17, 13315–13325 (2009).
    [CrossRef]
  22. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef]
  23. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972–2974 (2006).
    [CrossRef]
  24. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
    [CrossRef]
  25. D. Gao and Z. Zhou, “Nonlinear equation method for band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 88, 163105 (2006).
    [CrossRef]
  26. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
    [CrossRef]
  27. R. Hao, E. Cassan, H. Kurt, J. Hou, D. Marris-Morini, L. Vivien, D. Gao, Z. Zhou, and X. Zhang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
    [CrossRef]
  28. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
    [CrossRef]

2011 (1)

2010 (6)

2009 (4)

2008 (6)

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77, 115124 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
[CrossRef]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

2007 (2)

2006 (4)

2005 (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

2004 (1)

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

2001 (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

2000 (1)

Ahopelto, J.

Ar, M.

Baba, T.

Beggs, D. M.

Bermel, P.

Borel, P. I.

Burr, G.

Cassan, E.

Chen, R. T.

Chen, X.

Chen, Y. S.

De La Rue, R. M.

Do Khanh, V.

Doll, T.

Dulkeith, E.

Eich, M.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Etrich, C.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77, 115124 (2008).
[CrossRef]

Fage-Pedersen, J.

Farjadpour, A.

Frandsen, L. H.

Gao, D.

R. Hao, E. Cassan, H. Kurt, J. Hou, D. Marris-Morini, L. Vivien, D. Gao, Z. Zhou, and X. Zhang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

D. Gao and Z. Zhou, “Nonlinear equation method for band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 88, 163105 (2006).
[CrossRef]

Gomez-Iglesias, A.

Green, W. M. J.

Hamachi, Y.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Hao, R.

R. Hao, E. Cassan, H. Kurt, J. Hou, D. Marris-Morini, L. Vivien, D. Gao, Z. Zhou, and X. Zhang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010).
[CrossRef]

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Hou, J.

R. Hao, E. Cassan, H. Kurt, J. Hou, D. Marris-Morini, L. Vivien, D. Gao, Z. Zhou, and X. Zhang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Hugonin, J. P.

Ibanescu, M.

Iliew, R.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77, 115124 (2008).
[CrossRef]

Ji, Y.

Jiang, C.

F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
[CrossRef]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

Jiang, W.

Joannopoulos, J.

Joannopoulos, J. D.

Johnson, S. G.

Kovi, J.

Krauss, T. F.

Kubo, S.

Kuipers, L.

Kurt, H.

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010).
[CrossRef]

R. Hao, E. Cassan, H. Kurt, J. Hou, D. Marris-Morini, L. Vivien, D. Gao, Z. Zhou, and X. Zhang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Lalanne, P.

Lavrinenko, A. V.

Le Roux, X.

Lederer, F.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77, 115124 (2008).
[CrossRef]

Li, J.

Lipsanen, H.

Long, F.

Ma, J.

F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
[CrossRef]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

Marris-Morini, D.

Mazoyer, S.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Melloni, A.

Mori, D.

Morichetti, F.

Mulot, M.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

O’Faolain, L.

Pertsch, T.

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77, 115124 (2008).
[CrossRef]

Petrov, A. Y.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Rawal, S.

Rodriguez, A.

Roundy, D.

Säynätjoki, A.

Schares, L.

Scherer, A.

Schulz, S. A.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Sinha, R.

Spasenovi, M.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Tian, H.

Vivien, L.

Vlasov, Y. A.

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Wang, F.

White, T. P.

Wu, H.

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Xia, F.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Zhai, Y.

Zhang, X.

Zhao, Y.

Zhou, Z.

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010).
[CrossRef]

R. Hao, E. Cassan, H. Kurt, J. Hou, D. Marris-Morini, L. Vivien, D. Gao, Z. Zhou, and X. Zhang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

D. Gao and Z. Zhou, “Nonlinear equation method for band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 88, 163105 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. Gao and Z. Zhou, “Nonlinear equation method for band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 88, 163105 (2006).
[CrossRef]

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

R. Hao, E. Cassan, H. Kurt, J. Hou, D. Marris-Morini, L. Vivien, D. Gao, Z. Zhou, and X. Zhang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

J. Lightwave Technol. (4)

Nat. Photonics (2)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[CrossRef]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Opt. Express (9)

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovi, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[CrossRef]

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006).
[CrossRef]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010).
[CrossRef]

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[CrossRef]

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328(2007).
[CrossRef]

S. Rawal, R. Sinha, and R. M. De La Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17, 13315–13325 (2009).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (1)

R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77, 115124 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic structure of the AEPCW (here: Dx=Dy=0.80a and Dy=Dx=0.60a).

Fig. 2.
Fig. 2.

(a) Dispersion curves of the gap-guided PCW mode for different values of Dy when Dx=0.60a. (b) and (c) are the Ey electric field component distributions of points A and B labeled in Fig. 2(a).

Fig. 3.
Fig. 3.

(a) Dispersion curves of the gap-guided PCW mode for different values of Dx when Dy=0.06a, (b) and (c) are the Ey electric field component distributions of points C and D labeled in Fig. 3(a).

Fig. 4.
Fig. 4.

(a) PCW slow light mode dispersion curve for different values of the slab effective index neff (square, triangle, star, and circle denote neff=2.9, 3.0, 3.1, 3.2, respectively), when Dx=0.81a and Dy=0.73a. (b) Group index variation in similar condition as in (a).

Fig. 5.
Fig. 5.

Group index versus the normalized frequency and dispersion characteristics of slow light waveguide corresponding to neff=3.2.

Fig. 6.
Fig. 6.

Simulated AEPCW structure. Whole length of the AEPCW is 60a and the distance between monitors 1 and 2 is 50a.

Fig. 7.
Fig. 7.

Temporal pulses detected at the input and the output detecting points in the proposed AEPCW.

Tables (2)

Tables Icon

Table 1. Slow Light Performances of Different neff Employed

Tables Icon

Table 2. Comparison between the Optimized AEPCW and Reference Papers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NDBP=n¯g·Δω/ω0,

Metrics