Abstract

An improved method of backward ray tracing is proposed according to the theory of geometrical optics and thermal radiation heat transfer. The accuracy is essentially raised comparing to the traditional backward ray tracing because ray orders and weight factors are taken into account and the process is designed as sequential and recurring steps to trace and calculate different order stray lights. Meanwhile, it needs very small computation comparing to forward ray tracing because irrelevant surfaces and rays are excluded from the tracing. The effectiveness was verified in the stray radiation analysis for a cryogenic infrared (IR) imaging system, as the results coincided with the actual stray radiation irradiance distributions in the real images. The computation amount was compared with that of forward ray tracing in the narcissus calculation for another cryogenic IR imaging system, it was found that to produce the same accuracy result, the computation of the improved backward ray tracing is far smaller than that of forward ray tracing by at least 2 orders of magnitude.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Accurate calculation of Narcissus signatures by using finite ray tracing

K. Lu and S. J. Dobson
Appl. Opt. 36(25) 6393-6398 (1997)

Calculation and optimization of Narcissus using paraxial ray tracing

S. J. Dobson, A. Cox, and K. Lu
Appl. Opt. 35(16) 3059-3064 (1996)

Predicted dynamic electrothermal performance of thermistor bolometer radiometers for Earth radiation budget applications

Martial P. A. Haeffelin, J. Robert Mahan, and Kory J. Priestley
Appl. Opt. 36(28) 7129-7142 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription