Abstract

Specific fluorescent profiles were created by loading quantum-dot (Qdot) mixtures in liquid cores of monodispersed polymer microcapsules, which were used as colorimetric barcodes for small object identification. Since the emission intensities of Qdot-loaded liquid cores maintain a linear relation to the Qdot concentrations and the Qdots in the liquid cores with different emission peaks have no obvious interference, the colorimetric barcodes can be predefined by the compositions of Qdot mixtures. The colorimetric barcodes can be identified easily by recording the emission intensities of the encoded microcapsules at respective Qdot emission peaks with a simple and express algorithm, which are suitable to conduct high-throughput multiplexed assays by flow cytometer for biological screening applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
    [CrossRef]
  2. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
    [CrossRef]
  3. M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
    [CrossRef]
  4. D. Y. Wang, A. L. Rogach, and F. Caruso, “Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly,” Nano Lett. 2, 857–861 (2002).
    [CrossRef]
  5. J. A. Lee, S. Mardyani, A. Hung, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19, 3113–3118 (2007).
    [CrossRef]
  6. S. Fournier-Bidoz, T. L. Jennings, J. M. Klostranec, W. Fung, A. Rhee, D. Li, and W. C. W. Chan, “Facile and rapid one-step mass preparation of quantum-dot barcodes,” Ang. Chem. Int. Ed. 47, 5577–5581 (2008).
    [CrossRef]
  7. B. Wu, and H.-Q. Gong, “Fluorescence-profile pre-definable quantum-dot barcodes in liquid-core microcapsules,” Microfluid. Nanofluid. 13, 909–917 (2012).
    [CrossRef]
  8. A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science 308, 537–541 (2005).
    [CrossRef]
  9. Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, “Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors,” J. Am. Chem. Soc. 127, 8058–8063 (2005).
    [CrossRef]
  10. B. Wu and H.-Q. Gong, “Formation of fully closed microcapsules as microsensors by microfluidic double emulsion,” Microfluid. Nanofluid., 1–8 (2012).
    [CrossRef]
  11. J. Inglese, R. L. Johnson, A. Simeonov, M. H. Xia, W. Zheng, C. P. Austin, and D. S. Auld, “High-throughput screening assays for the identification of chemical probes,” Nat. Chem. Biol. 3, 466–479 (2007).
    [CrossRef]
  12. R. Wilson, A. R. Cossins, and D. G. Spiller, “Encoded microcarriers for high-throughput multiplexed detection,” Ang. Chem. Int. Ed. 45, 6104–6117 (2006).
    [CrossRef]
  13. Y. N. Xia, and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
    [CrossRef]
  14. W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
    [CrossRef]
  15. K. C. Goss, G. G. Messier, and M. E. Potter, “Data detection algorithms for multiplexed quantum dot encoding,” Opt. Express 20, 5762–5774 (2012).
    [CrossRef]

2012

B. Wu, and H.-Q. Gong, “Fluorescence-profile pre-definable quantum-dot barcodes in liquid-core microcapsules,” Microfluid. Nanofluid. 13, 909–917 (2012).
[CrossRef]

K. C. Goss, G. G. Messier, and M. E. Potter, “Data detection algorithms for multiplexed quantum dot encoding,” Opt. Express 20, 5762–5774 (2012).
[CrossRef]

2008

S. Fournier-Bidoz, T. L. Jennings, J. M. Klostranec, W. Fung, A. Rhee, D. Li, and W. C. W. Chan, “Facile and rapid one-step mass preparation of quantum-dot barcodes,” Ang. Chem. Int. Ed. 47, 5577–5581 (2008).
[CrossRef]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef]

2007

J. A. Lee, S. Mardyani, A. Hung, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19, 3113–3118 (2007).
[CrossRef]

J. Inglese, R. L. Johnson, A. Simeonov, M. H. Xia, W. Zheng, C. P. Austin, and D. S. Auld, “High-throughput screening assays for the identification of chemical probes,” Nat. Chem. Biol. 3, 466–479 (2007).
[CrossRef]

2006

R. Wilson, A. R. Cossins, and D. G. Spiller, “Encoded microcarriers for high-throughput multiplexed detection,” Ang. Chem. Int. Ed. 45, 6104–6117 (2006).
[CrossRef]

2005

A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science 308, 537–541 (2005).
[CrossRef]

Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, “Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors,” J. Am. Chem. Soc. 127, 8058–8063 (2005).
[CrossRef]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

2003

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

2002

D. Y. Wang, A. L. Rogach, and F. Caruso, “Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly,” Nano Lett. 2, 857–861 (2002).
[CrossRef]

2001

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef]

1998

Y. N. Xia, and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Auld, D. S.

J. Inglese, R. L. Johnson, A. Simeonov, M. H. Xia, W. Zheng, C. P. Austin, and D. S. Auld, “High-throughput screening assays for the identification of chemical probes,” Nat. Chem. Biol. 3, 466–479 (2007).
[CrossRef]

Austin, C. P.

J. Inglese, R. L. Johnson, A. Simeonov, M. H. Xia, W. Zheng, C. P. Austin, and D. S. Auld, “High-throughput screening assays for the identification of chemical probes,” Nat. Chem. Biol. 3, 466–479 (2007).
[CrossRef]

Caruso, F.

D. Y. Wang, A. L. Rogach, and F. Caruso, “Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly,” Nano Lett. 2, 857–861 (2002).
[CrossRef]

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef]

Chan, W. C. W.

S. Fournier-Bidoz, T. L. Jennings, J. M. Klostranec, W. Fung, A. Rhee, D. Li, and W. C. W. Chan, “Facile and rapid one-step mass preparation of quantum-dot barcodes,” Ang. Chem. Int. Ed. 47, 5577–5581 (2008).
[CrossRef]

J. A. Lee, S. Mardyani, A. Hung, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19, 3113–3118 (2007).
[CrossRef]

Cossins, A. R.

R. Wilson, A. R. Cossins, and D. G. Spiller, “Encoded microcarriers for high-throughput multiplexed detection,” Ang. Chem. Int. Ed. 45, 6104–6117 (2006).
[CrossRef]

Fournier-Bidoz, S.

S. Fournier-Bidoz, T. L. Jennings, J. M. Klostranec, W. Fung, A. Rhee, D. Li, and W. C. W. Chan, “Facile and rapid one-step mass preparation of quantum-dot barcodes,” Ang. Chem. Int. Ed. 47, 5577–5581 (2008).
[CrossRef]

Fung, W.

S. Fournier-Bidoz, T. L. Jennings, J. M. Klostranec, W. Fung, A. Rhee, D. Li, and W. C. W. Chan, “Facile and rapid one-step mass preparation of quantum-dot barcodes,” Ang. Chem. Int. Ed. 47, 5577–5581 (2008).
[CrossRef]

Gao, X. H.

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef]

Goldman, E. R.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

Gong, H.-Q.

B. Wu, and H.-Q. Gong, “Fluorescence-profile pre-definable quantum-dot barcodes in liquid-core microcapsules,” Microfluid. Nanofluid. 13, 909–917 (2012).
[CrossRef]

B. Wu and H.-Q. Gong, “Formation of fully closed microcapsules as microsensors by microfluidic double emulsion,” Microfluid. Nanofluid., 1–8 (2012).
[CrossRef]

Goss, K. C.

K. C. Goss, G. G. Messier, and M. E. Potter, “Data detection algorithms for multiplexed quantum dot encoding,” Opt. Express 20, 5762–5774 (2012).
[CrossRef]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef]

Guo, W. Z.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

Han, M. Y.

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef]

Hung, A.

J. A. Lee, S. Mardyani, A. Hung, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19, 3113–3118 (2007).
[CrossRef]

Inglese, J.

J. Inglese, R. L. Johnson, A. Simeonov, M. H. Xia, W. Zheng, C. P. Austin, and D. S. Auld, “High-throughput screening assays for the identification of chemical probes,” Nat. Chem. Biol. 3, 466–479 (2007).
[CrossRef]

Jennings, T. L.

S. Fournier-Bidoz, T. L. Jennings, J. M. Klostranec, W. Fung, A. Rhee, D. Li, and W. C. W. Chan, “Facile and rapid one-step mass preparation of quantum-dot barcodes,” Ang. Chem. Int. Ed. 47, 5577–5581 (2008).
[CrossRef]

Johnson, R. L.

J. Inglese, R. L. Johnson, A. Simeonov, M. H. Xia, W. Zheng, C. P. Austin, and D. S. Auld, “High-throughput screening assays for the identification of chemical probes,” Nat. Chem. Biol. 3, 466–479 (2007).
[CrossRef]

Kaplan, P. D.

A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science 308, 537–541 (2005).
[CrossRef]

Klostranec, J.

J. A. Lee, S. Mardyani, A. Hung, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19, 3113–3118 (2007).
[CrossRef]

Klostranec, J. M.

S. Fournier-Bidoz, T. L. Jennings, J. M. Klostranec, W. Fung, A. Rhee, D. Li, and W. C. W. Chan, “Facile and rapid one-step mass preparation of quantum-dot barcodes,” Ang. Chem. Int. Ed. 47, 5577–5581 (2008).
[CrossRef]

Kumacheva, E.

Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, “Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors,” J. Am. Chem. Soc. 127, 8058–8063 (2005).
[CrossRef]

Lee, J. A.

J. A. Lee, S. Mardyani, A. Hung, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19, 3113–3118 (2007).
[CrossRef]

Lewis, P. C.

Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, “Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors,” J. Am. Chem. Soc. 127, 8058–8063 (2005).
[CrossRef]

Li, D.

S. Fournier-Bidoz, T. L. Jennings, J. M. Klostranec, W. Fung, A. Rhee, D. Li, and W. C. W. Chan, “Facile and rapid one-step mass preparation of quantum-dot barcodes,” Ang. Chem. Int. Ed. 47, 5577–5581 (2008).
[CrossRef]

J. A. Lee, S. Mardyani, A. Hung, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19, 3113–3118 (2007).
[CrossRef]

Link, D. R.

A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science 308, 537–541 (2005).
[CrossRef]

Lorenceau, E.

A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science 308, 537–541 (2005).
[CrossRef]

Mardyani, S.

J. A. Lee, S. Mardyani, A. Hung, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19, 3113–3118 (2007).
[CrossRef]

Mattoussi, H.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

Medintz, I. L.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

Messier, G. G.

K. C. Goss, G. G. Messier, and M. E. Potter, “Data detection algorithms for multiplexed quantum dot encoding,” Opt. Express 20, 5762–5774 (2012).
[CrossRef]

Mu, Y.

J. A. Lee, S. Mardyani, A. Hung, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19, 3113–3118 (2007).
[CrossRef]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef]

Nie, S.

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef]

Nie, Z. H.

Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, “Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors,” J. Am. Chem. Soc. 127, 8058–8063 (2005).
[CrossRef]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef]

Peng, X. G.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

Potter, M. E.

K. C. Goss, G. G. Messier, and M. E. Potter, “Data detection algorithms for multiplexed quantum dot encoding,” Opt. Express 20, 5762–5774 (2012).
[CrossRef]

Qu, L. H.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef]

Rhee, A.

S. Fournier-Bidoz, T. L. Jennings, J. M. Klostranec, W. Fung, A. Rhee, D. Li, and W. C. W. Chan, “Facile and rapid one-step mass preparation of quantum-dot barcodes,” Ang. Chem. Int. Ed. 47, 5577–5581 (2008).
[CrossRef]

J. A. Lee, S. Mardyani, A. Hung, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19, 3113–3118 (2007).
[CrossRef]

Rogach, A. L.

D. Y. Wang, A. L. Rogach, and F. Caruso, “Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly,” Nano Lett. 2, 857–861 (2002).
[CrossRef]

Seo, M.

Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, “Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors,” J. Am. Chem. Soc. 127, 8058–8063 (2005).
[CrossRef]

Simeonov, A.

J. Inglese, R. L. Johnson, A. Simeonov, M. H. Xia, W. Zheng, C. P. Austin, and D. S. Auld, “High-throughput screening assays for the identification of chemical probes,” Nat. Chem. Biol. 3, 466–479 (2007).
[CrossRef]

Spiller, D. G.

R. Wilson, A. R. Cossins, and D. G. Spiller, “Encoded microcarriers for high-throughput multiplexed detection,” Ang. Chem. Int. Ed. 45, 6104–6117 (2006).
[CrossRef]

Stone, H. A.

A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science 308, 537–541 (2005).
[CrossRef]

Su, J. Z.

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef]

Utada, A. S.

A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science 308, 537–541 (2005).
[CrossRef]

Uyeda, H. T.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

Wang, D. Y.

D. Y. Wang, A. L. Rogach, and F. Caruso, “Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly,” Nano Lett. 2, 857–861 (2002).
[CrossRef]

Weitz, D. A.

A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science 308, 537–541 (2005).
[CrossRef]

Whitesides, G. M.

Y. N. Xia, and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Wilson, R.

R. Wilson, A. R. Cossins, and D. G. Spiller, “Encoded microcarriers for high-throughput multiplexed detection,” Ang. Chem. Int. Ed. 45, 6104–6117 (2006).
[CrossRef]

Wu, B.

B. Wu, and H.-Q. Gong, “Fluorescence-profile pre-definable quantum-dot barcodes in liquid-core microcapsules,” Microfluid. Nanofluid. 13, 909–917 (2012).
[CrossRef]

B. Wu and H.-Q. Gong, “Formation of fully closed microcapsules as microsensors by microfluidic double emulsion,” Microfluid. Nanofluid., 1–8 (2012).
[CrossRef]

Xia, M. H.

J. Inglese, R. L. Johnson, A. Simeonov, M. H. Xia, W. Zheng, C. P. Austin, and D. S. Auld, “High-throughput screening assays for the identification of chemical probes,” Nat. Chem. Biol. 3, 466–479 (2007).
[CrossRef]

Xia, Y. N.

Y. N. Xia, and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Xu, S. Q.

Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, “Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors,” J. Am. Chem. Soc. 127, 8058–8063 (2005).
[CrossRef]

Yu, W. W.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

Zheng, W.

J. Inglese, R. L. Johnson, A. Simeonov, M. H. Xia, W. Zheng, C. P. Austin, and D. S. Auld, “High-throughput screening assays for the identification of chemical probes,” Nat. Chem. Biol. 3, 466–479 (2007).
[CrossRef]

Adv. Mater.

J. A. Lee, S. Mardyani, A. Hung, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19, 3113–3118 (2007).
[CrossRef]

Ang. Chem. Int. Ed.

S. Fournier-Bidoz, T. L. Jennings, J. M. Klostranec, W. Fung, A. Rhee, D. Li, and W. C. W. Chan, “Facile and rapid one-step mass preparation of quantum-dot barcodes,” Ang. Chem. Int. Ed. 47, 5577–5581 (2008).
[CrossRef]

R. Wilson, A. R. Cossins, and D. G. Spiller, “Encoded microcarriers for high-throughput multiplexed detection,” Ang. Chem. Int. Ed. 45, 6104–6117 (2006).
[CrossRef]

Annu. Rev. Mater. Sci.

Y. N. Xia, and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[CrossRef]

Chem. Mater.

W. W. Yu, L. H. Qu, W. Z. Guo, and X. G. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[CrossRef]

J. Am. Chem. Soc.

Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, “Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors,” J. Am. Chem. Soc. 127, 8058–8063 (2005).
[CrossRef]

Microfluid. Nanofluid.

B. Wu, and H.-Q. Gong, “Fluorescence-profile pre-definable quantum-dot barcodes in liquid-core microcapsules,” Microfluid. Nanofluid. 13, 909–917 (2012).
[CrossRef]

Nano Lett.

D. Y. Wang, A. L. Rogach, and F. Caruso, “Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly,” Nano Lett. 2, 857–861 (2002).
[CrossRef]

Nat. Biotechnol.

M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef]

Nat. Chem. Biol.

J. Inglese, R. L. Johnson, A. Simeonov, M. H. Xia, W. Zheng, C. P. Austin, and D. S. Auld, “High-throughput screening assays for the identification of chemical probes,” Nat. Chem. Biol. 3, 466–479 (2007).
[CrossRef]

Nat. Mater.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435–446 (2005).
[CrossRef]

Nat. Methods

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef]

Opt. Express

K. C. Goss, G. G. Messier, and M. E. Potter, “Data detection algorithms for multiplexed quantum dot encoding,” Opt. Express 20, 5762–5774 (2012).
[CrossRef]

Science

A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science 308, 537–541 (2005).
[CrossRef]

Other

B. Wu and H.-Q. Gong, “Formation of fully closed microcapsules as microsensors by microfluidic double emulsion,” Microfluid. Nanofluid., 1–8 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Fabrication of the microcapsules. (a) Schematic diagram of the microfluidic device. (b) T-junction to generate the Qdot-solution droplets. Blue ink is added in the Qdot solution for illustration. (c) Y-junction to generate the double emulsion droplets. (d) The double emulsion droplets queue in the serpentine section under UV exposure to form the microcapsules.

Fig. 2.
Fig. 2.

(a) Fluorescent micrograph of a microcapsule. Its liquid core contains 0.5 μM Qdot600 [7]. (b) The Qdots loaded in the liquid cores maintain their original emission peaks. (c) The emission intensity of the Qdot-loaded liquid core is linearly proportional to the Qdot concentration [7]. (d) Qdot550 and Qdot600 have no interference in their mixtures up to 6 μM. The concentrations of Qdot550 increased from 1 to 5 μM in an increment of 1 μM for these five Qdot solutions. The concentrations of Qdot600 were 1 μM constantly. The exposure times for image capturing were 800 ms for Qdot550 and 100 ms for Qdot600.

Fig. 3.
Fig. 3.

(a) Fluorescent spectrum of the encoded microcapsule. (b) Bar chart of emission intensities of the encoded microcapsule and the intensity-reference microcapsules. The exposure time for image capturing was 100 ms.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F(ω)=a·f550(ω)+b·f600(ω)+c·f650(ω),
D=(f550(550)f550(600)f550(650)f600(550)f600(600)f600(650)f650(550)f650(600)f650(650)).
F=(F(550)F(600)F(650)),
(abc)=F·D1.

Metrics