Abstract

Three-dimensional (3D) sensing and imaging technologies have been extensively researched for many applications in the fields of entertainment, medicine, robotics, manufacturing, industrial inspection, security, surveillance, and defense due to their diverse and significant benefits. Integral imaging is a passive multiperspective imaging technique, which records multiple two-dimensional images of a scene from different perspectives. Unlike holography, it can capture a scene such as outdoor events with incoherent or ambient light. Integral imaging can display a true 3D color image with full parallax and continuous viewing angles by incoherent light; thus it does not suffer from speckle degradation. Because of its unique properties, integral imaging has been revived over the past decade or so as a promising approach for massive 3D commercialization. A series of key articles on this topic have appeared in the OSA journals, including Applied Optics. Thus, it is fitting that this Commemorative Review presents an overview of literature on physical principles and applications of integral imaging. Several data capture configurations, reconstruction, and display methods are overviewed. In addition, applications including 3D underwater imaging, 3D imaging in photon-starved environments, 3D tracking of occluded objects, 3D optical microscopy, and 3D polarimetric imaging are reviewed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sokolov, “Autostereoscopy and integral photography by Professor Lippmann’s method,” in Izd. MGU (Moscow State University, 1911).
  2. H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21, 171 (1931).
    [CrossRef]
  3. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–74 (1968).
    [CrossRef]
  4. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
    [CrossRef]
  5. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).
  6. B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, and Display (Springer, 2009).
  7. L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).
    [CrossRef]
  8. F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
    [CrossRef]
  9. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
    [CrossRef]
  10. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
    [CrossRef]
  11. T. Mishina, “3D television system based on integral photography,” in Proceedings of the Picture Coding Symposium (PCS), 2010 (IEEE, 2010), p. 20.
  12. J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
    [CrossRef]
  13. O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318–3325 (2001).
    [CrossRef]
  14. S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003).
    [CrossRef]
  15. S. H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085–12095 (2006).
    [CrossRef]
  16. R. Schulein, C. M. Do, and B. Javidi, “Distortion-tolerant 3D recognition of underwater objects using neural networks,” J. Opt. Soc. Am. A 27, 461–468 (2010).
    [CrossRef]
  17. M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34, 1105–1107 (2009).
    [CrossRef]
  18. J. H. Park and K. M. Jeong, “Frequency domain depth filtering of integral imaging,” Opt. Express 19, 18729–18741 (2011).
    [CrossRef]
  19. A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
    [CrossRef]
  20. S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express 15, 1513–1533 (2007).
    [CrossRef]
  21. B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426–4436 (2008).
    [CrossRef]
  22. I. Moon and B. Javidi, “Three-dimensional recognition of photon-starved events using computational integral imaging and statistical sampling,” Opt. Lett. 34, 731–733 (2009).
    [CrossRef]
  23. M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18, 26450–26460 (2010).
    [CrossRef]
  24. D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization,” Opt. Express 19, 19681–19687 (2011).
    [CrossRef]
  25. S. H. Hong and B. Javidi, “Three-dimensional visualization of partially occluded objects using integral imaging,” J. Disp. Technol. 1, 354–359 (2005).
    [CrossRef]
  26. I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express 16, 13080–13089 (2008).
    [CrossRef]
  27. M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
    [CrossRef]
  28. B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14, 12096–12108 (2006).
    [CrossRef]
  29. J. S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29, 1230–1232 (2004).
    [CrossRef]
  30. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
    [CrossRef]
  31. D. Shin, M. Cho, and B. Javidi, “Three-dimensional optical microscopy using axially distributed image sensing,” Opt. Lett. 35, 3646–3648 (2010).
    [CrossRef]
  32. Y. Zhao, X. Xiao, M. Cho, and B. Javidi, “Tracking of multiple objects in unknown background using Bayesian estimation in 3D space,” J. Opt. Soc. Am. A 28, 1935–1940 (2011).
    [CrossRef]
  33. X. Xiao, B. Javidi, G. Saavedra, M. Eismann, and M. Martinez-Corral, “Three-dimensional polarimetric computational integral imaging,” Opt. Express 20, 15481–15488 (2012).
    [CrossRef]
  34. C. Wheatstone, “Contributions to the physiology of vision.—Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. Lond. 128, 371–394 (1838).
    [CrossRef]
  35. W. Rollmann, “Zwei neue stereoskopische Methoden,” Ann. Phys. 166, 186–187 (1853).
    [CrossRef]
  36. D. S. Kim, S. M. Park, J. H. Jung, and D. C. Hwang, “51.2: new 240 Hz driving method for full HD & high quality 3D LCD TV,” SID Symp. Dig. Tech. Pap. 41, 762–765 (2010).
    [CrossRef]
  37. S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, D. G. Kim, and N. D. Kim, “World’s first 240 Hz TFT‐LCD technology for full‐HD LCD‐TV and its application to 3D display,” SID Symp. Dig. Tech. Pap. 40, 424–427 (2009).
    [CrossRef]
  38. H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “3.1: a novel polarizer glasses‐type 3D displays with a patterned retarder,” SID Symp. Dig. Tech. Pap. 41, 1–4 (2010).
    [CrossRef]
  39. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
    [CrossRef]
  40. R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801(2010).
    [CrossRef]
  41. P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
    [CrossRef]
  42. M. Holroyd, I. Baran, J. Lawrence, and W. Matusik, “Computing and fabricating multilayer models,” ACM Trans. Graph. 30, 187 (2011).
    [CrossRef]
  43. A. Marraud and M. Bonnet, “Restitution of stereoscopic picture by means of a lenticular sheet,” Proc. SPIE 0402, 129–132 (1983).
  44. Mashitani, “Autostereoscopic video display with a parallax barrier having oblique apertures,” U.S. patent 7,317,494(8January2008).
  45. H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
    [CrossRef]
  46. G. Hamagishi, “Analysis and improvement of viewing conditions for two‐view and multi‐view displays,” SID Symp. Dig. Tech. Pap. 40, 340–343 (2009).
    [CrossRef]
  47. T. Inoue and H. Ohzu, “Accommodative responses to stereoscopic three-dimensional display,” Appl. Opt. 36, 4509–4515 (1997).
    [CrossRef]
  48. F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).
    [CrossRef]
  49. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
    [CrossRef]
  50. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
    [CrossRef]
  51. J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
    [CrossRef]
  52. D. H. Shin, E. S. Kim, and B. Lee, “Computational reconstruction of three-dimensional objects in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
    [CrossRef]
  53. B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Performance of 3D integral imaging with position uncertainty,” Opt. Express 15, 11889–11902 (2007).
    [CrossRef]
  54. J. H. Park, G. Baasantseren, N. Kim, G. Park, J. M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
    [CrossRef]
  55. J. Y. Son, S. H. Kim, D. S. Kim, B. Javidi, and K. D. Kwack, “Image-forming principle of integral photography,” J. Disp. Technol. 4, 324–331 (2008).
    [CrossRef]
  56. Y. T. Lim, J. H. Park, K. C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17, 19253–19263 (2009).
    [CrossRef]
  57. M. U. Erdenebat, G. Baasantseren, and J. H. Park, “Full-parallax 360 degrees integral imaging display,” in Proceedings of the International Meeting on Information Display (Korean Information Display Society, 2010), pp. 812–813.
  58. H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).
    [CrossRef]
  59. H. Geng, Q. H. Wang, L. Li, and D. H. Li, “An integral-imaging three-dimensional display with wide viewing angle,” J. SID 19, 679–684 (2011).
  60. M. Cho, and B. Javidi, “Optimization of 3D integral imaging system parameters,” IEEE J. Disp. Technol. 8, 357–360 (2012).
    [CrossRef]
  61. A. Yöntem and L. Onural, “Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28, 2359–2375 (2011).
    [CrossRef]
  62. H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6, 404–411 (2010).
    [CrossRef]
  63. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
    [CrossRef]
  64. N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).
    [CrossRef]
  65. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
    [CrossRef]
  66. M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
    [CrossRef]
  67. J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
    [CrossRef]
  68. J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002).
    [CrossRef]
  69. M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional imaging with randomly distributed sensors,” Opt. Express 16, 6368–6377 (2008).
    [CrossRef]
  70. R. Schulein, M. DaneshPanah, and B. Javidi, “3D imaging with axially distributed sensing,” Opt. Lett. 34, 2012–2014 (2009).
    [CrossRef]
  71. X. Xiao, M. DaneshPanah, M. Cho, and B. Javidi, “3D integral imaging using sparse sensors with unknown positions,” J. Disp. Technol. 6, 614–619 (2010).
    [CrossRef]
  72. Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
    [CrossRef]
  73. M. Halle, “Multiple viewpoint rendering,” in Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (1998), pp. 243–254.
  74. R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14, 84–96 (2008).
  75. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
    [CrossRef]
  76. M. Martínez-Corral, H. Navarro, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Full parallax 3-D TV with programmable display parameters,” Opt. Photon. News 22(12), 50–50 (2011).
    [CrossRef]
  77. R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
    [CrossRef]
  78. H. Choi, S. W. Min, S. Jung, J. H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
    [CrossRef]
  79. M. Miura, J. Arai, T. Mishina, M. Okui, and F. Okano, “Integral imaging system with enlarged horizontal viewing angle,” Proc. SPIE 8384, 83840O (2012).
    [CrossRef]
  80. S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
    [CrossRef]
  81. H. Arimoto, and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
    [CrossRef]
  82. V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B. Kang, “Reconstructing occluded surfaces using synthetic apertures: stereo, focus and robust measures,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 2331–2338.
  83. S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13, 9310–9330 (2005).
    [CrossRef]
  84. X. Xiao and B. Javidi, “3D Photon counting integral imaging with unknown sensor positions,” J. Opt. Soc. Am. A 29, 767–771 (2012).
    [CrossRef]
  85. V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total variation regulated EM algorithm,” IEEE Trans. Nucl. Sci. 46, 2202–2210 (1999).
    [CrossRef]
  86. P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imag. 9, 84–93 (1990).
    [CrossRef]
  87. A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4, 1188–1195 (2012).
    [CrossRef]
  88. D. Shin, M. Daneshpanah, and B. Javidi, “Generalization of three-dimensional N-ocular imaging systems under fixed resource constraints,” Opt. Lett. 37, 19–21 (2012).
    [CrossRef]
  89. S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graph. 27, 1–10 (2008).
    [CrossRef]
  90. A. Gotchev, G. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99, 708–741 (2011).
    [CrossRef]
  91. B. Javidi, S. H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt. 45, 2986–2994 (2006).
    [CrossRef]

2012

X. Xiao, B. Javidi, G. Saavedra, M. Eismann, and M. Martinez-Corral, “Three-dimensional polarimetric computational integral imaging,” Opt. Express 20, 15481–15488 (2012).
[CrossRef]

M. Cho, and B. Javidi, “Optimization of 3D integral imaging system parameters,” IEEE J. Disp. Technol. 8, 357–360 (2012).
[CrossRef]

M. Miura, J. Arai, T. Mishina, M. Okui, and F. Okano, “Integral imaging system with enlarged horizontal viewing angle,” Proc. SPIE 8384, 83840O (2012).
[CrossRef]

X. Xiao and B. Javidi, “3D Photon counting integral imaging with unknown sensor positions,” J. Opt. Soc. Am. A 29, 767–771 (2012).
[CrossRef]

A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4, 1188–1195 (2012).
[CrossRef]

D. Shin, M. Daneshpanah, and B. Javidi, “Generalization of three-dimensional N-ocular imaging systems under fixed resource constraints,” Opt. Lett. 37, 19–21 (2012).
[CrossRef]

2011

A. Gotchev, G. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99, 708–741 (2011).
[CrossRef]

M. Martínez-Corral, H. Navarro, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Full parallax 3-D TV with programmable display parameters,” Opt. Photon. News 22(12), 50–50 (2011).
[CrossRef]

A. Yöntem and L. Onural, “Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28, 2359–2375 (2011).
[CrossRef]

H. Geng, Q. H. Wang, L. Li, and D. H. Li, “An integral-imaging three-dimensional display with wide viewing angle,” J. SID 19, 679–684 (2011).

M. Holroyd, I. Baran, J. Lawrence, and W. Matusik, “Computing and fabricating multilayer models,” ACM Trans. Graph. 30, 187 (2011).
[CrossRef]

Y. Zhao, X. Xiao, M. Cho, and B. Javidi, “Tracking of multiple objects in unknown background using Bayesian estimation in 3D space,” J. Opt. Soc. Am. A 28, 1935–1940 (2011).
[CrossRef]

D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization,” Opt. Express 19, 19681–19687 (2011).
[CrossRef]

J. H. Park and K. M. Jeong, “Frequency domain depth filtering of integral imaging,” Opt. Express 19, 18729–18741 (2011).
[CrossRef]

2010

R. Schulein, C. M. Do, and B. Javidi, “Distortion-tolerant 3D recognition of underwater objects using neural networks,” J. Opt. Soc. Am. A 27, 461–468 (2010).
[CrossRef]

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[CrossRef]

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18, 26450–26460 (2010).
[CrossRef]

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
[CrossRef]

D. Shin, M. Cho, and B. Javidi, “Three-dimensional optical microscopy using axially distributed image sensing,” Opt. Lett. 35, 3646–3648 (2010).
[CrossRef]

D. S. Kim, S. M. Park, J. H. Jung, and D. C. Hwang, “51.2: new 240 Hz driving method for full HD & high quality 3D LCD TV,” SID Symp. Dig. Tech. Pap. 41, 762–765 (2010).
[CrossRef]

H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “3.1: a novel polarizer glasses‐type 3D displays with a patterned retarder,” SID Symp. Dig. Tech. Pap. 41, 1–4 (2010).
[CrossRef]

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801(2010).
[CrossRef]

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6, 404–411 (2010).
[CrossRef]

X. Xiao, M. DaneshPanah, M. Cho, and B. Javidi, “3D integral imaging using sparse sensors with unknown positions,” J. Disp. Technol. 6, 614–619 (2010).
[CrossRef]

2009

J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[CrossRef]

Y. T. Lim, J. H. Park, K. C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17, 19253–19263 (2009).
[CrossRef]

G. Hamagishi, “Analysis and improvement of viewing conditions for two‐view and multi‐view displays,” SID Symp. Dig. Tech. Pap. 40, 340–343 (2009).
[CrossRef]

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, D. G. Kim, and N. D. Kim, “World’s first 240 Hz TFT‐LCD technology for full‐HD LCD‐TV and its application to 3D display,” SID Symp. Dig. Tech. Pap. 40, 424–427 (2009).
[CrossRef]

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
[CrossRef]

I. Moon and B. Javidi, “Three-dimensional recognition of photon-starved events using computational integral imaging and statistical sampling,” Opt. Lett. 34, 731–733 (2009).
[CrossRef]

M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34, 1105–1107 (2009).
[CrossRef]

R. Schulein, M. DaneshPanah, and B. Javidi, “3D imaging with axially distributed sensing,” Opt. Lett. 34, 2012–2014 (2009).
[CrossRef]

2008

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graph. 27, 1–10 (2008).
[CrossRef]

B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426–4436 (2008).
[CrossRef]

I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express 16, 13080–13089 (2008).
[CrossRef]

J. H. Park, G. Baasantseren, N. Kim, G. Park, J. M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

J. Y. Son, S. H. Kim, D. S. Kim, B. Javidi, and K. D. Kwack, “Image-forming principle of integral photography,” J. Disp. Technol. 4, 324–331 (2008).
[CrossRef]

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional imaging with randomly distributed sensors,” Opt. Express 16, 6368–6377 (2008).
[CrossRef]

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14, 84–96 (2008).

2007

B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Performance of 3D integral imaging with position uncertainty,” Opt. Express 15, 11889–11902 (2007).
[CrossRef]

S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express 15, 1513–1533 (2007).
[CrossRef]

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
[CrossRef]

2006

B. Javidi, S. H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt. 45, 2986–2994 (2006).
[CrossRef]

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

S. H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085–12095 (2006).
[CrossRef]

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14, 12096–12108 (2006).
[CrossRef]

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
[CrossRef]

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[CrossRef]

2005

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
[CrossRef]

D. H. Shin, E. S. Kim, and B. Lee, “Computational reconstruction of three-dimensional objects in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

S. H. Hong and B. Javidi, “Three-dimensional visualization of partially occluded objects using integral imaging,” J. Disp. Technol. 1, 354–359 (2005).
[CrossRef]

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[CrossRef]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13, 9310–9330 (2005).
[CrossRef]

2004

S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
[CrossRef]

J. S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29, 1230–1232 (2004).
[CrossRef]

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).
[CrossRef]

2003

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[CrossRef]

S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003).
[CrossRef]

H. Choi, S. W. Min, S. Jung, J. H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
[CrossRef]

2002

J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002).
[CrossRef]

2001

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318–3325 (2001).
[CrossRef]

H. Arimoto, and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
[CrossRef]

1999

V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total variation regulated EM algorithm,” IEEE Trans. Nucl. Sci. 46, 2202–2210 (1999).
[CrossRef]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

1998

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
[CrossRef]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[CrossRef]

1997

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
[CrossRef]

T. Inoue and H. Ohzu, “Accommodative responses to stereoscopic three-dimensional display,” Appl. Opt. 36, 4509–4515 (1997).
[CrossRef]

1992

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

1990

P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imag. 9, 84–93 (1990).
[CrossRef]

1988

N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).
[CrossRef]

L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).
[CrossRef]

1983

A. Marraud and M. Bonnet, “Restitution of stereoscopic picture by means of a lenticular sheet,” Proc. SPIE 0402, 129–132 (1983).

1980

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

1978

Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
[CrossRef]

1968

C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–74 (1968).
[CrossRef]

1931

H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21, 171 (1931).
[CrossRef]

1908

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
[CrossRef]

1853

W. Rollmann, “Zwei neue stereoskopische Methoden,” Ann. Phys. 166, 186–187 (1853).
[CrossRef]

1838

C. Wheatstone, “Contributions to the physiology of vision.—Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. Lond. 128, 371–394 (1838).
[CrossRef]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

Agrawala, M.

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graph. 27, 1–10 (2008).
[CrossRef]

Akar, G.

A. Gotchev, G. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99, 708–741 (2011).
[CrossRef]

Aloni, D.

A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4, 1188–1195 (2012).
[CrossRef]

D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization,” Opt. Express 19, 19681–19687 (2011).
[CrossRef]

Arai, J.

M. Miura, J. Arai, T. Mishina, M. Okui, and F. Okano, “Integral imaging system with enlarged horizontal viewing angle,” Proc. SPIE 8384, 83840O (2012).
[CrossRef]

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[CrossRef]

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[CrossRef]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
[CrossRef]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
[CrossRef]

Arimoto, H.

H. Arimoto, and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
[CrossRef]

Baasantseren, G.

J. H. Park, G. Baasantseren, N. Kim, G. Park, J. M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

M. U. Erdenebat, G. Baasantseren, and J. H. Park, “Full-parallax 360 degrees integral imaging display,” in Proceedings of the International Meeting on Information Display (Korean Information Display Society, 2010), pp. 812–813.

Bablumian, A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Baik, I. S.

H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “3.1: a novel polarizer glasses‐type 3D displays with a patterned retarder,” SID Symp. Dig. Tech. Pap. 41, 1–4 (2010).
[CrossRef]

Baran, I.

M. Holroyd, I. Baran, J. Lawrence, and W. Matusik, “Computing and fabricating multilayer models,” ACM Trans. Graph. 30, 187 (2011).
[CrossRef]

Berkeley, B. H.

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, D. G. Kim, and N. D. Kim, “World’s first 240 Hz TFT‐LCD technology for full‐HD LCD‐TV and its application to 3D display,” SID Symp. Dig. Tech. Pap. 40, 424–427 (2009).
[CrossRef]

Blanche, P. A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Boev, A.

A. Gotchev, G. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99, 708–741 (2011).
[CrossRef]

Bonnet, M.

A. Marraud and M. Bonnet, “Restitution of stereoscopic picture by means of a lenticular sheet,” Proc. SPIE 0402, 129–132 (1983).

Burckhardt, C. B.

C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–74 (1968).
[CrossRef]

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[CrossRef]

Capin, T.

A. Gotchev, G. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99, 708–741 (2011).
[CrossRef]

Cho, M.

M. Cho, and B. Javidi, “Optimization of 3D integral imaging system parameters,” IEEE J. Disp. Technol. 8, 357–360 (2012).
[CrossRef]

Y. Zhao, X. Xiao, M. Cho, and B. Javidi, “Tracking of multiple objects in unknown background using Bayesian estimation in 3D space,” J. Opt. Soc. Am. A 28, 1935–1940 (2011).
[CrossRef]

X. Xiao, M. DaneshPanah, M. Cho, and B. Javidi, “3D integral imaging using sparse sensors with unknown positions,” J. Disp. Technol. 6, 614–619 (2010).
[CrossRef]

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
[CrossRef]

D. Shin, M. Cho, and B. Javidi, “Three-dimensional optical microscopy using axially distributed image sensing,” Opt. Lett. 35, 3646–3648 (2010).
[CrossRef]

Choi, H.

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, D. G. Kim, and N. D. Kim, “World’s first 240 Hz TFT‐LCD technology for full‐HD LCD‐TV and its application to 3D display,” SID Symp. Dig. Tech. Pap. 40, 424–427 (2009).
[CrossRef]

H. Choi, S. W. Min, S. Jung, J. H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
[CrossRef]

Choi, K. H.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
[CrossRef]

Chong, T. C.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801(2010).
[CrossRef]

Christenson, C.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Chung, I. J.

H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “3.1: a novel polarizer glasses‐type 3D displays with a patterned retarder,” SID Symp. Dig. Tech. Pap. 41, 1–4 (2010).
[CrossRef]

Daneshpanah, M.

D. Shin, M. Daneshpanah, and B. Javidi, “Generalization of three-dimensional N-ocular imaging systems under fixed resource constraints,” Opt. Lett. 37, 19–21 (2012).
[CrossRef]

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18, 26450–26460 (2010).
[CrossRef]

X. Xiao, M. DaneshPanah, M. Cho, and B. Javidi, “3D integral imaging using sparse sensors with unknown positions,” J. Disp. Technol. 6, 614–619 (2010).
[CrossRef]

R. Schulein, M. DaneshPanah, and B. Javidi, “3D imaging with axially distributed sensing,” Opt. Lett. 34, 2012–2014 (2009).
[CrossRef]

M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34, 1105–1107 (2009).
[CrossRef]

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional imaging with randomly distributed sensors,” Opt. Express 16, 6368–6377 (2008).
[CrossRef]

B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Performance of 3D integral imaging with position uncertainty,” Opt. Express 15, 11889–11902 (2007).
[CrossRef]

Davies, N.

L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).
[CrossRef]

N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).
[CrossRef]

Do, C. M.

R. Schulein, C. M. Do, and B. Javidi, “Distortion-tolerant 3D recognition of underwater objects using neural networks,” J. Opt. Soc. Am. A 27, 461–468 (2010).
[CrossRef]

Eismann, M.

X. Xiao, B. Javidi, G. Saavedra, M. Eismann, and M. Martinez-Corral, “Three-dimensional polarimetric computational integral imaging,” Opt. Express 20, 15481–15488 (2012).
[CrossRef]

Erdenebat, M. U.

M. U. Erdenebat, G. Baasantseren, and J. H. Park, “Full-parallax 360 degrees integral imaging display,” in Proceedings of the International Meeting on Information Display (Korean Information Display Society, 2010), pp. 812–813.

Farbiz, F.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801(2010).
[CrossRef]

Flores, D.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Furuya, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[CrossRef]

Geng, H.

H. Geng, Q. H. Wang, L. Li, and D. H. Li, “An integral-imaging three-dimensional display with wide viewing angle,” J. SID 19, 679–684 (2011).

Gotchev, A.

A. Gotchev, G. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99, 708–741 (2011).
[CrossRef]

Green, P. J.

P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imag. 9, 84–93 (1990).
[CrossRef]

Gu, J. S.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
[CrossRef]

Gu, T.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Gullberg, G. T.

V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total variation regulated EM algorithm,” IEEE Trans. Nucl. Sci. 46, 2202–2210 (1999).
[CrossRef]

Haino, Y.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[CrossRef]

Halle, M.

M. Halle, “Multiple viewpoint rendering,” in Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (1998), pp. 243–254.

Hamagishi, G.

G. Hamagishi, “Analysis and improvement of viewing conditions for two‐view and multi‐view displays,” SID Symp. Dig. Tech. Pap. 40, 340–343 (2009).
[CrossRef]

Holroyd, M.

M. Holroyd, I. Baran, J. Lawrence, and W. Matusik, “Computing and fabricating multilayer models,” ACM Trans. Graph. 30, 187 (2011).
[CrossRef]

Hong, K.

J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[CrossRef]

Hong, S. H.

B. Javidi, S. H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt. 45, 2986–2994 (2006).
[CrossRef]

S. H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085–12095 (2006).
[CrossRef]

S. H. Hong and B. Javidi, “Three-dimensional visualization of partially occluded objects using integral imaging,” J. Disp. Technol. 1, 354–359 (2005).
[CrossRef]

S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
[CrossRef]

Hoshino, H.

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[CrossRef]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
[CrossRef]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[CrossRef]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
[CrossRef]

Hsieh, W. Y.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Huang, X.

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14, 84–96 (2008).

Hwang, D. C.

D. S. Kim, S. M. Park, J. H. Jung, and D. C. Hwang, “51.2: new 240 Hz driving method for full HD & high quality 3D LCD TV,” SID Symp. Dig. Tech. Pap. 41, 762–765 (2010).
[CrossRef]

Igarashi, Y.

Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
[CrossRef]

Inoue, T.

T. Inoue and H. Ohzu, “Accommodative responses to stereoscopic three-dimensional display,” Appl. Opt. 36, 4509–4515 (1997).
[CrossRef]

Isono, H.

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[CrossRef]

Ives, H. E.

H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21, 171 (1931).
[CrossRef]

Jang, H. W.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
[CrossRef]

Jang, J. S.

S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
[CrossRef]

J. S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29, 1230–1232 (2004).
[CrossRef]

J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002).
[CrossRef]

Javidi, B.

M. Cho, and B. Javidi, “Optimization of 3D integral imaging system parameters,” IEEE J. Disp. Technol. 8, 357–360 (2012).
[CrossRef]

D. Shin, M. Daneshpanah, and B. Javidi, “Generalization of three-dimensional N-ocular imaging systems under fixed resource constraints,” Opt. Lett. 37, 19–21 (2012).
[CrossRef]

X. Xiao and B. Javidi, “3D Photon counting integral imaging with unknown sensor positions,” J. Opt. Soc. Am. A 29, 767–771 (2012).
[CrossRef]

X. Xiao, B. Javidi, G. Saavedra, M. Eismann, and M. Martinez-Corral, “Three-dimensional polarimetric computational integral imaging,” Opt. Express 20, 15481–15488 (2012).
[CrossRef]

A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4, 1188–1195 (2012).
[CrossRef]

M. Martínez-Corral, H. Navarro, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Full parallax 3-D TV with programmable display parameters,” Opt. Photon. News 22(12), 50–50 (2011).
[CrossRef]

D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization,” Opt. Express 19, 19681–19687 (2011).
[CrossRef]

Y. Zhao, X. Xiao, M. Cho, and B. Javidi, “Tracking of multiple objects in unknown background using Bayesian estimation in 3D space,” J. Opt. Soc. Am. A 28, 1935–1940 (2011).
[CrossRef]

X. Xiao, M. DaneshPanah, M. Cho, and B. Javidi, “3D integral imaging using sparse sensors with unknown positions,” J. Disp. Technol. 6, 614–619 (2010).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).
[CrossRef]

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18, 26450–26460 (2010).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6, 404–411 (2010).
[CrossRef]

D. Shin, M. Cho, and B. Javidi, “Three-dimensional optical microscopy using axially distributed image sensing,” Opt. Lett. 35, 3646–3648 (2010).
[CrossRef]

R. Schulein, C. M. Do, and B. Javidi, “Distortion-tolerant 3D recognition of underwater objects using neural networks,” J. Opt. Soc. Am. A 27, 461–468 (2010).
[CrossRef]

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
[CrossRef]

I. Moon and B. Javidi, “Three-dimensional recognition of photon-starved events using computational integral imaging and statistical sampling,” Opt. Lett. 34, 731–733 (2009).
[CrossRef]

M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34, 1105–1107 (2009).
[CrossRef]

R. Schulein, M. DaneshPanah, and B. Javidi, “3D imaging with axially distributed sensing,” Opt. Lett. 34, 2012–2014 (2009).
[CrossRef]

B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426–4436 (2008).
[CrossRef]

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional imaging with randomly distributed sensors,” Opt. Express 16, 6368–6377 (2008).
[CrossRef]

J. Y. Son, S. H. Kim, D. S. Kim, B. Javidi, and K. D. Kwack, “Image-forming principle of integral photography,” J. Disp. Technol. 4, 324–331 (2008).
[CrossRef]

I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express 16, 13080–13089 (2008).
[CrossRef]

S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express 15, 1513–1533 (2007).
[CrossRef]

B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Performance of 3D integral imaging with position uncertainty,” Opt. Express 15, 11889–11902 (2007).
[CrossRef]

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
[CrossRef]

S. H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085–12095 (2006).
[CrossRef]

B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14, 12096–12108 (2006).
[CrossRef]

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

B. Javidi, S. H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt. 45, 2986–2994 (2006).
[CrossRef]

S. H. Hong and B. Javidi, “Three-dimensional visualization of partially occluded objects using integral imaging,” J. Disp. Technol. 1, 354–359 (2005).
[CrossRef]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
[CrossRef]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13, 9310–9330 (2005).
[CrossRef]

S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
[CrossRef]

J. S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29, 1230–1232 (2004).
[CrossRef]

S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003).
[CrossRef]

J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002).
[CrossRef]

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318–3325 (2001).
[CrossRef]

H. Arimoto, and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
[CrossRef]

B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, and Display (Springer, 2009).

Jaynes, C.

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14, 84–96 (2008).

Jeong, K. M.

J. H. Park and K. M. Jeong, “Frequency domain depth filtering of integral imaging,” Opt. Express 19, 18729–18741 (2011).
[CrossRef]

Jeong, W. N.

H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “3.1: a novel polarizer glasses‐type 3D displays with a patterned retarder,” SID Symp. Dig. Tech. Pap. 41, 1–4 (2010).
[CrossRef]

Jung, H. J.

H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “3.1: a novel polarizer glasses‐type 3D displays with a patterned retarder,” SID Symp. Dig. Tech. Pap. 41, 1–4 (2010).
[CrossRef]

Jung, J. H.

D. S. Kim, S. M. Park, J. H. Jung, and D. C. Hwang, “51.2: new 240 Hz driving method for full HD & high quality 3D LCD TV,” SID Symp. Dig. Tech. Pap. 41, 762–765 (2010).
[CrossRef]

Jung, S.

H. Choi, S. W. Min, S. Jung, J. H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
[CrossRef]

Kang, H.

H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “3.1: a novel polarizer glasses‐type 3D displays with a patterned retarder,” SID Symp. Dig. Tech. Pap. 41, 1–4 (2010).
[CrossRef]

Kang, J. M.

J. H. Park, G. Baasantseren, N. Kim, G. Park, J. M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

Kang, S. B.

V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B. Kang, “Reconstructing occluded surfaces using synthetic apertures: stereo, focus and robust measures,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 2331–2338.

Kathaperumal, M.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Kawakita, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[CrossRef]

Kim, B. S.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
[CrossRef]

Kim, D. G.

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, D. G. Kim, and N. D. Kim, “World’s first 240 Hz TFT‐LCD technology for full‐HD LCD‐TV and its application to 3D display,” SID Symp. Dig. Tech. Pap. 40, 424–427 (2009).
[CrossRef]

Kim, D. S.

D. S. Kim, S. M. Park, J. H. Jung, and D. C. Hwang, “51.2: new 240 Hz driving method for full HD & high quality 3D LCD TV,” SID Symp. Dig. Tech. Pap. 41, 762–765 (2010).
[CrossRef]

J. Y. Son, S. H. Kim, D. S. Kim, B. Javidi, and K. D. Kwack, “Image-forming principle of integral photography,” J. Disp. Technol. 4, 324–331 (2008).
[CrossRef]

Kim, E. S.

D. H. Shin, E. S. Kim, and B. Lee, “Computational reconstruction of three-dimensional objects in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

Kim, N.

Y. T. Lim, J. H. Park, K. C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17, 19253–19263 (2009).
[CrossRef]

J. H. Park, G. Baasantseren, N. Kim, G. Park, J. M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

Kim, N. D.

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, D. G. Kim, and N. D. Kim, “World’s first 240 Hz TFT‐LCD technology for full‐HD LCD‐TV and its application to 3D display,” SID Symp. Dig. Tech. Pap. 40, 424–427 (2009).
[CrossRef]

Kim, S. H.

J. Y. Son, S. H. Kim, D. S. Kim, B. Javidi, and K. D. Kwack, “Image-forming principle of integral photography,” J. Disp. Technol. 4, 324–331 (2008).
[CrossRef]

Kim, S. S.

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, D. G. Kim, and N. D. Kim, “World’s first 240 Hz TFT‐LCD technology for full‐HD LCD‐TV and its application to 3D display,” SID Symp. Dig. Tech. Pap. 40, 424–427 (2009).
[CrossRef]

Kishk, S.

S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003).
[CrossRef]

Kooi, F. L.

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).
[CrossRef]

Kwack, K. D.

J. Y. Son, S. H. Kim, D. S. Kim, B. Javidi, and K. D. Kwack, “Image-forming principle of integral photography,” J. Disp. Technol. 4, 324–331 (2008).
[CrossRef]

Kwon, K. C.

Y. T. Lim, J. H. Park, K. C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17, 19253–19263 (2009).
[CrossRef]

Lawrence, J.

M. Holroyd, I. Baran, J. Lawrence, and W. Matusik, “Computing and fabricating multilayer models,” ACM Trans. Graph. 30, 187 (2011).
[CrossRef]

Lee, B.

J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[CrossRef]

J. H. Park, G. Baasantseren, N. Kim, G. Park, J. M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

D. H. Shin, E. S. Kim, and B. Lee, “Computational reconstruction of three-dimensional objects in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

H. Choi, S. W. Min, S. Jung, J. H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
[CrossRef]

Lee, H. J.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
[CrossRef]

Lee, J. D.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
[CrossRef]

Levoy, M.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
[CrossRef]

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[CrossRef]

V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B. Kang, “Reconstructing occluded surfaces using synthetic apertures: stereo, focus and robust measures,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 2331–2338.

Li, D. H.

H. Geng, Q. H. Wang, L. Li, and D. H. Li, “An integral-imaging three-dimensional display with wide viewing angle,” J. SID 19, 679–684 (2011).

Li, L.

H. Geng, Q. H. Wang, L. Li, and D. H. Li, “An integral-imaging three-dimensional display with wide viewing angle,” J. SID 19, 679–684 (2011).

Li, S.

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14, 84–96 (2008).

Liang, X.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801(2010).
[CrossRef]

Lim, Y. T.

Y. T. Lim, J. H. Park, K. C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17, 19253–19263 (2009).
[CrossRef]

Lin, W.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
[CrossRef]

Marraud, A.

A. Marraud and M. Bonnet, “Restitution of stereoscopic picture by means of a lenticular sheet,” Proc. SPIE 0402, 129–132 (1983).

Martinez-Corral, M.

X. Xiao, B. Javidi, G. Saavedra, M. Eismann, and M. Martinez-Corral, “Three-dimensional polarimetric computational integral imaging,” Opt. Express 20, 15481–15488 (2012).
[CrossRef]

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
[CrossRef]

Martínez-Corral, M.

M. Martínez-Corral, H. Navarro, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Full parallax 3-D TV with programmable display parameters,” Opt. Photon. News 22(12), 50–50 (2011).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6, 404–411 (2010).
[CrossRef]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
[CrossRef]

Martínez-Cuenca, R.

M. Martínez-Corral, H. Navarro, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Full parallax 3-D TV with programmable display parameters,” Opt. Photon. News 22(12), 50–50 (2011).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6, 404–411 (2010).
[CrossRef]

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
[CrossRef]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
[CrossRef]

Mashitani,

Mashitani, “Autostereoscopic video display with a parallax barrier having oblique apertures,” U.S. patent 7,317,494(8January2008).

Matoba, O.

B. Javidi, S. H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt. 45, 2986–2994 (2006).
[CrossRef]

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318–3325 (2001).
[CrossRef]

Matusik, W.

M. Holroyd, I. Baran, J. Lawrence, and W. Matusik, “Computing and fabricating multilayer models,” ACM Trans. Graph. 30, 187 (2011).
[CrossRef]

McCormick, M.

L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).
[CrossRef]

N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).
[CrossRef]

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
[CrossRef]

Min, S. W.

H. Choi, S. W. Min, S. Jung, J. H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
[CrossRef]

Mishina, T.

M. Miura, J. Arai, T. Mishina, M. Okui, and F. Okano, “Integral imaging system with enlarged horizontal viewing angle,” Proc. SPIE 8384, 83840O (2012).
[CrossRef]

T. Mishina, “3D television system based on integral photography,” in Proceedings of the Picture Coding Symposium (PCS), 2010 (IEEE, 2010), p. 20.

Mitani, K.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

Miura, M.

M. Miura, J. Arai, T. Mishina, M. Okui, and F. Okano, “Integral imaging system with enlarged horizontal viewing angle,” Proc. SPIE 8384, 83840O (2012).
[CrossRef]

Molina-Martín, A.

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6, 404–411 (2010).
[CrossRef]

Moon, I.

I. Moon and B. Javidi, “Three-dimensional recognition of photon-starved events using computational integral imaging and statistical sampling,” Opt. Lett. 34, 731–733 (2009).
[CrossRef]

I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express 16, 13080–13089 (2008).
[CrossRef]

B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14, 12096–12108 (2006).
[CrossRef]

Murata, H.

Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
[CrossRef]

Nam, H.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
[CrossRef]

Navarro, H.

M. Martínez-Corral, H. Navarro, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Full parallax 3-D TV with programmable display parameters,” Opt. Photon. News 22(12), 50–50 (2011).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6, 404–411 (2010).
[CrossRef]

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
[CrossRef]

Ohzu, H.

T. Inoue and H. Ohzu, “Accommodative responses to stereoscopic three-dimensional display,” Appl. Opt. 36, 4509–4515 (1997).
[CrossRef]

Okano, F.

M. Miura, J. Arai, T. Mishina, M. Okui, and F. Okano, “Integral imaging system with enlarged horizontal viewing angle,” Proc. SPIE 8384, 83840O (2012).
[CrossRef]

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[CrossRef]

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[CrossRef]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
[CrossRef]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[CrossRef]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
[CrossRef]

B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, and Display (Springer, 2009).

Okoshi, T.

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).

Okui, M.

M. Miura, J. Arai, T. Mishina, M. Okui, and F. Okano, “Integral imaging system with enlarged horizontal viewing angle,” Proc. SPIE 8384, 83840O (2012).
[CrossRef]

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[CrossRef]

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[CrossRef]

Onural, L.

A. Yöntem and L. Onural, “Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28, 2359–2375 (2011).
[CrossRef]

Pan, Y.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801(2010).
[CrossRef]

Panin, V. Y.

V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total variation regulated EM algorithm,” IEEE Trans. Nucl. Sci. 46, 2202–2210 (1999).
[CrossRef]

Park, C. Y.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
[CrossRef]

Park, G.

J. H. Park, G. Baasantseren, N. Kim, G. Park, J. M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

Park, J. H.

J. H. Park and K. M. Jeong, “Frequency domain depth filtering of integral imaging,” Opt. Express 19, 18729–18741 (2011).
[CrossRef]

J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[CrossRef]

Y. T. Lim, J. H. Park, K. C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17, 19253–19263 (2009).
[CrossRef]

J. H. Park, G. Baasantseren, N. Kim, G. Park, J. M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

H. Choi, S. W. Min, S. Jung, J. H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
[CrossRef]

M. U. Erdenebat, G. Baasantseren, and J. H. Park, “Full-parallax 360 degrees integral imaging display,” in Proceedings of the International Meeting on Information Display (Korean Information Display Society, 2010), pp. 812–813.

Park, S. M.

D. S. Kim, S. M. Park, J. H. Jung, and D. C. Hwang, “51.2: new 240 Hz driving method for full HD & high quality 3D LCD TV,” SID Symp. Dig. Tech. Pap. 41, 762–765 (2010).
[CrossRef]

Pollefeys, M.

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graph. 27, 1–10 (2008).
[CrossRef]

Roh, S. D.

H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “3.1: a novel polarizer glasses‐type 3D displays with a patterned retarder,” SID Symp. Dig. Tech. Pap. 41, 1–4 (2010).
[CrossRef]

Rollmann, W.

W. Rollmann, “Zwei neue stereoskopische Methoden,” Ann. Phys. 166, 186–187 (1853).
[CrossRef]

Saavedra, G.

X. Xiao, B. Javidi, G. Saavedra, M. Eismann, and M. Martinez-Corral, “Three-dimensional polarimetric computational integral imaging,” Opt. Express 20, 15481–15488 (2012).
[CrossRef]

M. Martínez-Corral, H. Navarro, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Full parallax 3-D TV with programmable display parameters,” Opt. Photon. News 22(12), 50–50 (2011).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6, 404–411 (2010).
[CrossRef]

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
[CrossRef]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
[CrossRef]

Sato, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[CrossRef]

Schulein, R.

R. Schulein, C. M. Do, and B. Javidi, “Distortion-tolerant 3D recognition of underwater objects using neural networks,” J. Opt. Soc. Am. A 27, 461–468 (2010).
[CrossRef]

R. Schulein, M. DaneshPanah, and B. Javidi, “3D imaging with axially distributed sensing,” Opt. Lett. 34, 2012–2014 (2009).
[CrossRef]

Shin, D.

D. Shin, M. Daneshpanah, and B. Javidi, “Generalization of three-dimensional N-ocular imaging systems under fixed resource constraints,” Opt. Lett. 37, 19–21 (2012).
[CrossRef]

D. Shin, M. Cho, and B. Javidi, “Three-dimensional optical microscopy using axially distributed image sensing,” Opt. Lett. 35, 3646–3648 (2010).
[CrossRef]

Shin, D. H.

D. H. Shin, E. S. Kim, and B. Lee, “Computational reconstruction of three-dimensional objects in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

Shin, J. K.

H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “3.1: a novel polarizer glasses‐type 3D displays with a patterned retarder,” SID Symp. Dig. Tech. Pap. 41, 1–4 (2010).
[CrossRef]

Sinha, S.

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graph. 27, 1–10 (2008).
[CrossRef]

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[CrossRef]

Sokolov, A.

A. Sokolov, “Autostereoscopy and integral photography by Professor Lippmann’s method,” in Izd. MGU (Moscow State University, 1911).

Solanki, S.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801(2010).
[CrossRef]

Son, J. Y.

J. Y. Son, S. H. Kim, D. S. Kim, B. Javidi, and K. D. Kwack, “Image-forming principle of integral photography,” J. Disp. Technol. 4, 324–331 (2008).
[CrossRef]

B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, and Display (Springer, 2009).

Song, M. S.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
[CrossRef]

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[CrossRef]

Steedly, D.

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graph. 27, 1–10 (2008).
[CrossRef]

Stern, A.

A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4, 1188–1195 (2012).
[CrossRef]

D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization,” Opt. Express 19, 19681–19687 (2011).
[CrossRef]

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

Strohmeier, D.

A. Gotchev, G. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99, 708–741 (2011).
[CrossRef]

Szeliski, R.

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graph. 27, 1–10 (2008).
[CrossRef]

V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B. Kang, “Reconstructing occluded surfaces using synthetic apertures: stereo, focus and robust measures,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 2331–2338.

Tajahuerce, E.

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318–3325 (2001).
[CrossRef]

Tanjung, R. B. A.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801(2010).
[CrossRef]

Tavakoli, B.

B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426–4436 (2008).
[CrossRef]

B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Performance of 3D integral imaging with position uncertainty,” Opt. Express 15, 11889–11902 (2007).
[CrossRef]

Toet, A.

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).
[CrossRef]

Ueda, M.

Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
[CrossRef]

Vaish, V.

V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B. Kang, “Reconstructing occluded surfaces using synthetic apertures: stereo, focus and robust measures,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 2331–2338.

Voorakaranam, R.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

Wang, P.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Wang, Q. H.

H. Geng, Q. H. Wang, L. Li, and D. H. Li, “An integral-imaging three-dimensional display with wide viewing angle,” J. SID 19, 679–684 (2011).

Watson, E.

B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426–4436 (2008).
[CrossRef]

B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Performance of 3D integral imaging with position uncertainty,” Opt. Express 15, 11889–11902 (2007).
[CrossRef]

S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express 15, 1513–1533 (2007).
[CrossRef]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13, 9310–9330 (2005).
[CrossRef]

Watson, E. A.

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18, 26450–26460 (2010).
[CrossRef]

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional imaging with randomly distributed sensors,” Opt. Express 16, 6368–6377 (2008).
[CrossRef]

Wheatstone, C.

C. Wheatstone, “Contributions to the physiology of vision.—Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. Lond. 128, 371–394 (1838).
[CrossRef]

Xiao, X.

X. Xiao and B. Javidi, “3D Photon counting integral imaging with unknown sensor positions,” J. Opt. Soc. Am. A 29, 767–771 (2012).
[CrossRef]

X. Xiao, B. Javidi, G. Saavedra, M. Eismann, and M. Martinez-Corral, “Three-dimensional polarimetric computational integral imaging,” Opt. Express 20, 15481–15488 (2012).
[CrossRef]

Y. Zhao, X. Xiao, M. Cho, and B. Javidi, “Tracking of multiple objects in unknown background using Bayesian estimation in 3D space,” J. Opt. Soc. Am. A 28, 1935–1940 (2011).
[CrossRef]

X. Xiao, M. DaneshPanah, M. Cho, and B. Javidi, “3D integral imaging using sparse sensors with unknown positions,” J. Disp. Technol. 6, 614–619 (2010).
[CrossRef]

Xu, B.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801(2010).
[CrossRef]

Xu, X.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801(2010).
[CrossRef]

Yang, L.

L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).
[CrossRef]

N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).
[CrossRef]

Yang, R.

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14, 84–96 (2008).

Yeom, S.

S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express 15, 1513–1533 (2007).
[CrossRef]

B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14, 12096–12108 (2006).
[CrossRef]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13, 9310–9330 (2005).
[CrossRef]

Yöntem, A.

A. Yöntem and L. Onural, “Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28, 2359–2375 (2011).
[CrossRef]

Yoshimura, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[CrossRef]

You, B. H.

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, D. G. Kim, and N. D. Kim, “World’s first 240 Hz TFT‐LCD technology for full‐HD LCD‐TV and its application to 3D display,” SID Symp. Dig. Tech. Pap. 40, 424–427 (2009).
[CrossRef]

Yuyama, I.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
[CrossRef]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[CrossRef]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
[CrossRef]

Zeng, G. L.

V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total variation regulated EM algorithm,” IEEE Trans. Nucl. Sci. 46, 2202–2210 (1999).
[CrossRef]

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
[CrossRef]

Zhao, Y.

Y. Zhao, X. Xiao, M. Cho, and B. Javidi, “Tracking of multiple objects in unknown background using Bayesian estimation in 3D space,” J. Opt. Soc. Am. A 28, 1935–1940 (2011).
[CrossRef]

Zitnick, C. L.

V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B. Kang, “Reconstructing occluded surfaces using synthetic apertures: stereo, focus and robust measures,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 2331–2338.

ACM Trans. Graph.

M. Holroyd, I. Baran, J. Lawrence, and W. Matusik, “Computing and fabricating multilayer models,” ACM Trans. Graph. 30, 187 (2011).
[CrossRef]

S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, “Interactive 3D architectural modeling from unordered photo collections,” ACM Trans. Graph. 27, 1–10 (2008).
[CrossRef]

Ann. Phys.

W. Rollmann, “Zwei neue stereoskopische Methoden,” Ann. Phys. 166, 186–187 (1853).
[CrossRef]

Appl. Opt.

L. Yang, M. McCormick, and N. Davies, “Discussion of the optics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534 (1988).
[CrossRef]

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
[CrossRef]

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318–3325 (2001).
[CrossRef]

T. Inoue and H. Ohzu, “Accommodative responses to stereoscopic three-dimensional display,” Appl. Opt. 36, 4509–4515 (1997).
[CrossRef]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
[CrossRef]

N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).
[CrossRef]

J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[CrossRef]

B. Javidi, S. H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt. 45, 2986–2994 (2006).
[CrossRef]

Computer

M. Levoy, “Light fields and computational imaging,” Computer 39, 46–55 (2006).
[CrossRef]

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[CrossRef]

Displays

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).
[CrossRef]

IEEE J. Disp. Technol.

M. Cho, and B. Javidi, “Optimization of 3D integral imaging system parameters,” IEEE J. Disp. Technol. 8, 357–360 (2012).
[CrossRef]

IEEE Photonics J.

A. Stern, D. Aloni, and B. Javidi, “Experiments with three-dimensional integral imaging under low light levels,” IEEE Photonics J. 4, 1188–1195 (2012).
[CrossRef]

IEEE Trans. Med. Imag.

P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imag. 9, 84–93 (1990).
[CrossRef]

IEEE Trans. Nucl. Sci.

V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total variation regulated EM algorithm,” IEEE Trans. Nucl. Sci. 46, 2202–2210 (1999).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

IEEE Trans. Vis. Comput. Graph.

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14, 84–96 (2008).

J. Disp. Technol.

X. Xiao, M. DaneshPanah, M. Cho, and B. Javidi, “3D integral imaging using sparse sensors with unknown positions,” J. Disp. Technol. 6, 614–619 (2010).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M. Martínez-Corral, G. Saavedra, and B. Javidi, “Method to remedy image degradations due to facet braiding in 3D integral-imaging monitors,” J. Disp. Technol. 6, 404–411 (2010).
[CrossRef]

J. Y. Son, S. H. Kim, D. S. Kim, B. Javidi, and K. D. Kwack, “Image-forming principle of integral photography,” J. Disp. Technol. 4, 324–331 (2008).
[CrossRef]

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6, 422–430 (2010).
[CrossRef]

S. H. Hong and B. Javidi, “Three-dimensional visualization of partially occluded objects using integral imaging,” J. Disp. Technol. 1, 354–359 (2005).
[CrossRef]

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
[CrossRef]

J. Microsc.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
[CrossRef]

J. Opt. Soc. Am.

H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21, 171 (1931).
[CrossRef]

J. Opt. Soc. Am. A

C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–74 (1968).
[CrossRef]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[CrossRef]

R. Schulein, C. M. Do, and B. Javidi, “Distortion-tolerant 3D recognition of underwater objects using neural networks,” J. Opt. Soc. Am. A 27, 461–468 (2010).
[CrossRef]

Y. Zhao, X. Xiao, M. Cho, and B. Javidi, “Tracking of multiple objects in unknown background using Bayesian estimation in 3D space,” J. Opt. Soc. Am. A 28, 1935–1940 (2011).
[CrossRef]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
[CrossRef]

A. Yöntem and L. Onural, “Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28, 2359–2375 (2011).
[CrossRef]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
[CrossRef]

X. Xiao and B. Javidi, “3D Photon counting integral imaging with unknown sensor positions,” J. Opt. Soc. Am. A 29, 767–771 (2012).
[CrossRef]

J. Phys.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
[CrossRef]

J. SID

H. Geng, Q. H. Wang, L. Li, and D. H. Li, “An integral-imaging three-dimensional display with wide viewing angle,” J. SID 19, 679–684 (2011).

Jpn. J. Appl. Phys.

Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
[CrossRef]

D. H. Shin, E. S. Kim, and B. Lee, “Computational reconstruction of three-dimensional objects in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

Nature

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Opt. Eng.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” Opt. Eng. 49, 025801(2010).
[CrossRef]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072–1077 (1999).
[CrossRef]

Opt. Express

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional imaging with randomly distributed sensors,” Opt. Express 16, 6368–6377 (2008).
[CrossRef]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18, 25573–25583 (2010).
[CrossRef]

Y. T. Lim, J. H. Park, K. C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17, 19253–19263 (2009).
[CrossRef]

B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Performance of 3D integral imaging with position uncertainty,” Opt. Express 15, 11889–11902 (2007).
[CrossRef]

J. H. Park, G. Baasantseren, N. Kim, G. Park, J. M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

X. Xiao, B. Javidi, G. Saavedra, M. Eismann, and M. Martinez-Corral, “Three-dimensional polarimetric computational integral imaging,” Opt. Express 20, 15481–15488 (2012).
[CrossRef]

B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14, 12096–12108 (2006).
[CrossRef]

I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express 16, 13080–13089 (2008).
[CrossRef]

S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express 15, 1513–1533 (2007).
[CrossRef]

B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426–4436 (2008).
[CrossRef]

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18, 26450–26460 (2010).
[CrossRef]

D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization,” Opt. Express 19, 19681–19687 (2011).
[CrossRef]

J. H. Park and K. M. Jeong, “Frequency domain depth filtering of integral imaging,” Opt. Express 19, 18729–18741 (2011).
[CrossRef]

S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003).
[CrossRef]

S. H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085–12095 (2006).
[CrossRef]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13, 9310–9330 (2005).
[CrossRef]

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
[CrossRef]

H. Choi, S. W. Min, S. Jung, J. H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
[CrossRef]

S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
[CrossRef]

Opt. Lett.

H. Arimoto, and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
[CrossRef]

D. Shin, M. Daneshpanah, and B. Javidi, “Generalization of three-dimensional N-ocular imaging systems under fixed resource constraints,” Opt. Lett. 37, 19–21 (2012).
[CrossRef]

M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34, 1105–1107 (2009).
[CrossRef]

I. Moon and B. Javidi, “Three-dimensional recognition of photon-starved events using computational integral imaging and statistical sampling,” Opt. Lett. 34, 731–733 (2009).
[CrossRef]

J. S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29, 1230–1232 (2004).
[CrossRef]

D. Shin, M. Cho, and B. Javidi, “Three-dimensional optical microscopy using axially distributed image sensing,” Opt. Lett. 35, 3646–3648 (2010).
[CrossRef]

R. Schulein, M. DaneshPanah, and B. Javidi, “3D imaging with axially distributed sensing,” Opt. Lett. 34, 2012–2014 (2009).
[CrossRef]

J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002).
[CrossRef]

Opt. Photon. News

M. Martínez-Corral, H. Navarro, R. Martínez-Cuenca, G. Saavedra, and B. Javidi, “Full parallax 3-D TV with programmable display parameters,” Opt. Photon. News 22(12), 50–50 (2011).
[CrossRef]

Philos. Trans. R. Soc. Lond.

C. Wheatstone, “Contributions to the physiology of vision.—Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. Lond. 128, 371–394 (1838).
[CrossRef]

Proc. IEEE

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

A. Gotchev, G. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-dimensional media for mobile devices,” Proc. IEEE 99, 708–741 (2011).
[CrossRef]

Proc. SPIE

M. Miura, J. Arai, T. Mishina, M. Okui, and F. Okano, “Integral imaging system with enlarged horizontal viewing angle,” Proc. SPIE 8384, 83840O (2012).
[CrossRef]

A. Marraud and M. Bonnet, “Restitution of stereoscopic picture by means of a lenticular sheet,” Proc. SPIE 0402, 129–132 (1983).

SID Symp. Dig. Tech. Pap.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).
[CrossRef]

G. Hamagishi, “Analysis and improvement of viewing conditions for two‐view and multi‐view displays,” SID Symp. Dig. Tech. Pap. 40, 340–343 (2009).
[CrossRef]

D. S. Kim, S. M. Park, J. H. Jung, and D. C. Hwang, “51.2: new 240 Hz driving method for full HD & high quality 3D LCD TV,” SID Symp. Dig. Tech. Pap. 41, 762–765 (2010).
[CrossRef]

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, D. G. Kim, and N. D. Kim, “World’s first 240 Hz TFT‐LCD technology for full‐HD LCD‐TV and its application to 3D display,” SID Symp. Dig. Tech. Pap. 40, 424–427 (2009).
[CrossRef]

H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K. Shin, and I. J. Chung, “3.1: a novel polarizer glasses‐type 3D displays with a patterned retarder,” SID Symp. Dig. Tech. Pap. 41, 1–4 (2010).
[CrossRef]

Other

T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).

B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, and Display (Springer, 2009).

T. Mishina, “3D television system based on integral photography,” in Proceedings of the Picture Coding Symposium (PCS), 2010 (IEEE, 2010), p. 20.

A. Sokolov, “Autostereoscopy and integral photography by Professor Lippmann’s method,” in Izd. MGU (Moscow State University, 1911).

Mashitani, “Autostereoscopic video display with a parallax barrier having oblique apertures,” U.S. patent 7,317,494(8January2008).

M. U. Erdenebat, G. Baasantseren, and J. H. Park, “Full-parallax 360 degrees integral imaging display,” in Proceedings of the International Meeting on Information Display (Korean Information Display Society, 2010), pp. 812–813.

M. Halle, “Multiple viewpoint rendering,” in Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (1998), pp. 243–254.

V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B. Kang, “Reconstructing occluded surfaces using synthetic apertures: stereo, focus and robust measures,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 2331–2338.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1.
Fig. 1.

Image capture stage in IP.

Fig. 2.
Fig. 2.

Display stage in integral imaging.

Fig. 3.
Fig. 3.

Capture setup of FInI.

Fig. 4.
Fig. 4.

FInI scene capture. (a) Subimages are synthesized from the pixels of each EI. (b) Subimages are equivalent to the EIs that could be obtained by one integral imaging sensor.

Fig. 5.
Fig. 5.

Pickup stage of integral imaging using a camera array.

Fig. 6.
Fig. 6.

Illustration of an integral imaging system with randomly distributed sensors.

Fig. 7.
Fig. 7.

Optical pickup stage for the ADS architecture.

Fig. 8.
Fig. 8.

Illustration of estimating unknown sensor positions.

Fig. 9.
Fig. 9.

Schematic drawing of the orthoscopic, virtual reconstruction.

Fig. 10.
Fig. 10.

(a) Collection of EIs obtained with a conventional integral imaging pickup system, (b) synthetic EIs calculated with SPOC, and (c) reconstruction of the orthoscopic, floating 3D image through an MP4 player.

Fig. 11.
Fig. 11.

Method for the enlargement of the horizontal viewing angle in integral imaging monitors.

Fig. 12.
Fig. 12.

Illustration of computational reconstruction method in integral imaging.

Fig. 13.
Fig. 13.

Computational reconstruction results using integral imaging data capture. (a) Three examples of EIs and (b) reconstructed 3D images at z=4.5m and z=5.3m.

Fig. 14.
Fig. 14.

Computational reconstruction results in ADS system. (a) EIs. The left is the closest EI to the scene, the right is the farthest one. (b) Reconstructed 3D images, where the green car and the red fire truck are in focus, respectively.

Fig. 15.
Fig. 15.

Ray diagram for object surface point and free-space point in integral imaging.

Fig. 16.
Fig. 16.

Ray diagram (3D profile) for object surface points and free-space points in integral imaging.

Fig. 17.
Fig. 17.

3D visualization in turbid water. (a) 3D scene in clear water, (b) one sample of EI in turbid water, (c), (d) 3D reconstruction results in clear water and in turbid water, respectively, and (e), (f) 3D reconstruction results in turbid water at various depth planes with statistical image processing.

Fig. 18.
Fig. 18.

(a), (c) Binary photon counting EIs when Np=10,000 and Np=30,000, respectively and (b), (d) corresponding image restoration results using TV MAP.

Fig. 19.
Fig. 19.

(a) Simulated EI obtained with conventional camera having an SNR=0.18 and (b) reconstructed image.

Fig. 20.
Fig. 20.

Subset of EIs (each 2784×1856 pixels) in 3D tracking experiments of occluded objects.

Fig. 21.
Fig. 21.

3D tracking results of two moving cars on the reconstructed images in integral imaging. (a) Second temporal frame. (b) Frame nine. Here the scene illumination is reduced to one half and the left car is rotated. (c) Frame 14. Here both cars are rotated. (d) Frame 17. Here the right car is rotated. (e) Frame 27. Here the scene illumination is doubled and the left car is rotated.

Fig. 22.
Fig. 22.

Integral imaging 3D microscopy and automated cell identification.

Fig. 23.
Fig. 23.

3D polarimetric integral imaging experimental results. (a) Subset of EIs. (b) Reconstruction results of conventional integral imaging at 450 mm, 530 mm, and 720 mm. (c) Reconstruction results of the 3D polarimetric integral imaging with p=0.2mm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Ω=tan1(rsr2+z02+z0s),
Sxk=Zi(ukiax)fXifxk,Syk=Zi(vkiay)fYifyk,
R(x,y,z)=1O(x,y)k=0K1l=0L1Ekl(xkNx×pcx×M,ylNy×pcy×M),
R(x,y,z)=1O(x,y)k=0K1Ek(xMk,yMk)withMk=zkz0,
R(x,y,z)=k=0K1Ek(xMkNx×pxkcx×M,yMkNy×pykcy×M)withMk=zkz,
z^(x,y)=argminzZk=0K1l=0L1[L(θkl,φkl,λ)L¯(θ,φ,λ)]2,
P(c|W)=(W)ceWc!,c=0,1,2,,
rj(n+1)=rj(n)iHij+β(U(r(n))/rj)iHijcikHikrk(n),

Metrics