Abstract

We theoretically and experimentally demonstrate a linear and stable photonic RF phase shifter based on a dual-parallel Mach–Zehnder modulator (DPMZM) using a two-drive scheme. To avoid the effect of the residual optical carrier and overcome the lowest frequency limit from the optical filter, a local microwave signal and a signal up-converted from the under-phase-shifted RF signal are applied to the two RF inputs of the DPMZM, respectively. A phase-shifted RF signal is generated by beating the two first-order upper sidebands located in the passband of the optical filter. A continuous and linear phase shift of more than 360° and power variation of less than ±0.15dB at 1 GHz are achieved by simply tuning the bias voltage of the modulator. A phase tuning bandwidth of more than 17 MHz and phase drift of less than 0.5° within 2000 s are also observed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Minasian, “Optical signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006).
    [CrossRef]
  2. J. Capmany, B. Ortega, and D. Pastor, “Tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [CrossRef]
  3. Y. Yu and J. P. Yao, “A tunable microwave photonic filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 24, 201–209 (2006).
  4. X. X. Xue, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, “Tunable 360° photonic radio frequency phase shifter based on optical quadrature double-sideband modulation and differential detection,” Opt. Lett. 36, 4641–4643 (2011).
    [CrossRef]
  5. E. H. W. Chan, W. W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightwave Technol. 30, 3672–3678 (2012).
    [CrossRef]
  6. S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
    [CrossRef]
  7. X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
    [CrossRef]
  8. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 357–359 (2006).
  9. J. Sancho, J. Lloret, I. Gaslla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19, 17421–17426 (2011).
    [CrossRef]
  10. Y. Dong, H. He, and W. S. Hu, “Photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach–Zehnder interferometer,” Opt. Lett. 32, 745–747 (2007).
    [CrossRef]
  11. H. Chen, Y. Dong, H. He, W. S. Hu, and L. M. Zhang, “Photonic radio-frequency phase shifter based on polarization interference,” Opt. Lett. 34, 2375–2377 (2009).
    [CrossRef]
  12. Z. H. Li, C. Y. Yu, Y. Dong, and L. H. Cheng, “Linear photonic radio frequency phase shifter using a different-group-delay element and an optical phase modulator,” Opt. Lett. 35, 1881–1883 (2010).
    [CrossRef]
  13. S. L. Pan and Y. M. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett. 37, 4483–4485 (2012).
    [CrossRef]
  14. J. G. Shen, G. L. Wu, W. Zou, and J. P. Chen, “A photonic RF phase shifter based on a dual-parallel Mach–Zehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
    [CrossRef]
  15. E. Bogatin, Signal Integrity—Simplified (Academic, 2003).
  16. H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. Van, “Linear tunable phase shifter using a left-handed transmission line,” IEEE Microw. Wirel. Compon. Lett. 15, 366–368 (2005).
    [CrossRef]
  17. Y. Park, “A CMOS voltage controlled continuous phase shifter with active loss compensation,” IEEE Microw. Wirel. Compon. Lett. 22, 421–423 (2012).
    [CrossRef]
  18. S. M. Forma, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
    [CrossRef]
  19. L. M. Zhang, L. Chang, Y. Dong, W. L. Xie, H. He, and W. S. Hu, “Phase drift cancellation of remote radio frequency transfer using an optoelectronic delay-locked loop,” Opt. Lett. 36, 873–875 (2011).
    [CrossRef]

2012 (4)

Y. Park, “A CMOS voltage controlled continuous phase shifter with active loss compensation,” IEEE Microw. Wirel. Compon. Lett. 22, 421–423 (2012).
[CrossRef]

J. G. Shen, G. L. Wu, W. Zou, and J. P. Chen, “A photonic RF phase shifter based on a dual-parallel Mach–Zehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
[CrossRef]

S. L. Pan and Y. M. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett. 37, 4483–4485 (2012).
[CrossRef]

E. H. W. Chan, W. W. Zhang, and R. A. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightwave Technol. 30, 3672–3678 (2012).
[CrossRef]

2011 (3)

2010 (2)

Z. H. Li, C. Y. Yu, Y. Dong, and L. H. Cheng, “Linear photonic radio frequency phase shifter using a different-group-delay element and an optical phase modulator,” Opt. Lett. 35, 1881–1883 (2010).
[CrossRef]

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
[CrossRef]

2009 (1)

2007 (2)

S. M. Forma, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

Y. Dong, H. He, and W. S. Hu, “Photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach–Zehnder interferometer,” Opt. Lett. 32, 745–747 (2007).
[CrossRef]

2006 (4)

J. Capmany, B. Ortega, and D. Pastor, “Tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 357–359 (2006).

R. A. Minasian, “Optical signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006).
[CrossRef]

Y. Yu and J. P. Yao, “A tunable microwave photonic filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 24, 201–209 (2006).

2005 (1)

H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. Van, “Linear tunable phase shifter using a left-handed transmission line,” IEEE Microw. Wirel. Compon. Lett. 15, 366–368 (2005).
[CrossRef]

1999 (1)

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

Bhattacharya, D.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

Bogatin, E.

E. Bogatin, Signal Integrity—Simplified (Academic, 2003).

Capmany, J.

Chan, E. H. W.

Chang, D. H.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

Chang, L.

Chang, Y.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

Chen, H.

Chen, J. P.

J. G. Shen, G. L. Wu, W. Zou, and J. P. Chen, “A photonic RF phase shifter based on a dual-parallel Mach–Zehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
[CrossRef]

Cheng, L. H.

Dong, Y.

Erlig, H.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

Fetterman, H. R.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

Forma, S. M.

S. M. Forma, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

Fu, S.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
[CrossRef]

Gaslla, I.

He, H.

Holman, K. W.

S. M. Forma, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

Hong, X.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
[CrossRef]

Hu, W. S.

Hudson, D. D.

S. M. Forma, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

Jones, D. J.

S. M. Forma, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

Karbassi, A.

H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. Van, “Linear tunable phase shifter using a left-handed transmission line,” IEEE Microw. Wirel. Compon. Lett. 15, 366–368 (2005).
[CrossRef]

Kim, H.

H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. Van, “Linear tunable phase shifter using a left-handed transmission line,” IEEE Microw. Wirel. Compon. Lett. 15, 366–368 (2005).
[CrossRef]

Kozyrev, A. B.

H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. Van, “Linear tunable phase shifter using a left-handed transmission line,” IEEE Microw. Wirel. Compon. Lett. 15, 366–368 (2005).
[CrossRef]

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 357–359 (2006).

Lee, S. S.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

Li, Z. H.

Lin, J.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
[CrossRef]

Lloret, J.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 357–359 (2006).

Minasian, R. A.

Ortega, B.

Pan, S. L.

Park, Y.

Y. Park, “A CMOS voltage controlled continuous phase shifter with active loss compensation,” IEEE Microw. Wirel. Compon. Lett. 22, 421–423 (2012).
[CrossRef]

Pastor, D.

Sales, S.

Sancho, J.

Shen, J. G.

J. G. Shen, G. L. Wu, W. Zou, and J. P. Chen, “A photonic RF phase shifter based on a dual-parallel Mach–Zehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
[CrossRef]

Shum, P.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
[CrossRef]

Sun, X.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
[CrossRef]

Tsap, B.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

Udupa, A. H.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

Van, D. W.

H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. Van, “Linear tunable phase shifter using a left-handed transmission line,” IEEE Microw. Wirel. Compon. Lett. 15, 366–368 (2005).
[CrossRef]

Wu, G. L.

J. G. Shen, G. L. Wu, W. Zou, and J. P. Chen, “A photonic RF phase shifter based on a dual-parallel Mach–Zehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
[CrossRef]

Wu, J.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
[CrossRef]

Xie, W. L.

Xu, K.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
[CrossRef]

Xue, X. X.

Yao, J. P.

Y. Yu and J. P. Yao, “A tunable microwave photonic filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 24, 201–209 (2006).

Ye, J.

S. M. Forma, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

Yin, J.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
[CrossRef]

Yu, C. Y.

Yu, Y.

Y. Yu and J. P. Yao, “A tunable microwave photonic filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 24, 201–209 (2006).

Zhang, C.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

Zhang, H.

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

Zhang, H. Y.

Zhang, L. M.

Zhang, W. W.

Zhang, Y. M.

Zheng, X. P.

Zhou, B. K.

Zhou, J.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
[CrossRef]

Zou, W.

J. G. Shen, G. L. Wu, W. Zou, and J. P. Chen, “A photonic RF phase shifter based on a dual-parallel Mach–Zehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
[CrossRef]

Appl. Phys. Express (1)

J. G. Shen, G. L. Wu, W. Zou, and J. P. Chen, “A photonic RF phase shifter based on a dual-parallel Mach–Zehnder modulator and an optical filter,” Appl. Phys. Express 5, 072502 (2012).
[CrossRef]

IEEE Microw. Guided Wave Lett. (1)

S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, D. H. Chang, D. Bhattacharya, B. Tsap, and H. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett. 9, 357–359 (1999).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (2)

H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. Van, “Linear tunable phase shifter using a left-handed transmission line,” IEEE Microw. Wirel. Compon. Lett. 15, 366–368 (2005).
[CrossRef]

Y. Park, “A CMOS voltage controlled continuous phase shifter with active loss compensation,” IEEE Microw. Wirel. Compon. Lett. 22, 421–423 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Yu and J. P. Yao, “A tunable microwave photonic filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 24, 201–209 (2006).

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 357–359 (2006).

IEEE Trans. Microw. Theory Tech. (2)

R. A. Minasian, “Optical signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006).
[CrossRef]

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, “Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber,” IEEE Trans. Microw. Theory Tech. 58, 3206–3212 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (6)

Rev. Sci. Instrum. (1)

S. M. Forma, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007).
[CrossRef]

Other (1)

E. Bogatin, Signal Integrity—Simplified (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the proposed RF phase shifter. RF, radio frequency; LO, local microwave signal; DPMZM, dual parallel Mach–Zehnder modulator; PC, polarization controller; EDFA, erbium-doped fiber amplifier; U-C, electric up-converter; OBPF, optical bandpass filter.

Fig. 2.
Fig. 2.

Experimental setup of the proposed photonic RF phase shifter.

Fig. 3.
Fig. 3.

Optical spectrum after TOBPF.

Fig. 4.
Fig. 4.

Measured RF spectrum at the output of the PD.

Fig. 5.
Fig. 5.

Measured waveform at 1 GHz with phase shift of 0°, 90°, and 180°.

Fig. 6.
Fig. 6.

Measured phase shift and power variation versus applied bias voltage of DC3.

Fig. 7.
Fig. 7.

Phase drift within 2000 s in an open laboratory environment.

Fig. 8.
Fig. 8.

Pulse response of the proposed photonic RF phase shifter.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E1(t)=A1{exp[j((ωc+ωL)tθ2)]+exp[j((ωcωL)tθ2)]}+A2{exp[j((ωc+ωL+Ω)t+θ2)]+exp[j((ωcωLΩ)t+θ2)]},
θ=πV3/Vπ3,
E2(t)=GLfilterA1exp[j((ωc+ωL)tθ2)]+GLfilterA2exp[j((ωct+ωL+Ω)t+θ2)],
i(t)E2(t)×E2*(t)=GLfilterA1A2cos(Ωt+θ)=GLfilterA1A2cos(Ωt+πV3/Vπ3).
Etop=122Einexp(jωct+jm12cosωLt+jφ12)+122Einexp(jωctjm12cosωLtjφ12)=12Eincos(m12cosωLt+φ12)exp(jωct),
Ebot=122Einexp[jωct+jm22cos(ωL+Ω)t+jφ22]+122Einexp(jωctjm22cos(ωL+Ω)tjφ22)=12Eincos[m22cos(ωL+Ω)tφ22]exp(jωct),
Eout=12[Etopexp(jθ2)+Ebotexp(jθ2)]=14Ein{cos[m12cosωLt+φ12]exp(jθ2)+cos[m22cos(ωL+Ω)t+φ22]exp(jθ2)},
Eout=12EinJ1(m1/2){exp[j((ωc+ωL)tθ2)]+exp[j((ωcωL)tθ2)]}exp(jπ)+12EinJ1(m2/2){exp[j((ωc+ωL+Ω)t+θ2)]+exp[j((ωctωLΩ)t+θ2)]}exp(jπ),

Metrics