Abstract

A wide bandwidth tunable optical low-frequency shifter is presented in this work. It is based on two acousto-optic devices operating in tandem. The relevant parameters of the specific configurations of acousto-optic interactions in paratellurite material are detailed. Results from numerical computations leading to the practical design parameters are given. The low-frequency shifter has been experimentally tested at a visible wavelength λ0=514nm and a high efficiency (>60%) has been measured. The tuning capability of the optical shifter covers a bandwidth Δf=26MHz.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Shang, S. Yan, L. Ren, S. Zhao, and Y. He, “Experiment study on heterodyne laser Doppler vibrometry with three different structures,” Proc. SPIE 8332, 833212 (2011).
    [CrossRef]
  2. Y. Fu, M. Guo, and P. B. Phua, “Spatially encoded multibeam laser Doppler vibrometry using a single photodetector,” Opt. Lett. 35, 1356–1358 (2010).
    [CrossRef]
  3. R. P. Kaczmarek, T. Rogowski, A. J. Antonczak, and K. M. Abramski, “Laser Doppler vibrometry with acoustooptic frequency shift,” Opt. Appl. 34, 373–384 (2004).
  4. S. Dupont and J. C. Kastelik, “Demonstration of a tunable two-frequency projected fringe pattern with acousto-optic deflectors,” Rev. Sci. Instrum. 79, 056101 (2008).
    [CrossRef]
  5. S. H. Dupont, J. C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).
  6. T. Xie, Z. Wang, and Y. Pan, “High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation,” Opt. Express 11, 3210–3219 (2003).
    [CrossRef]
  7. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004).
    [CrossRef]
  8. J. Y. Ha, M. Shishkov, M. Colice, W. Y. Oh, H. Yoo, L. Liu, G. J. Tearney, and B. E. Bouma, “Compensation of motion artifacts in catheter based optical frequency domain imaging,” Opt. Express 18, 11418–11427 (2010).
    [CrossRef]
  9. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
    [CrossRef]
  10. T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999).
    [CrossRef]
  11. S. Y. Suck, S. Collin, N. Bardou, Y. D. Wilde, and G. Tessier, “Imaging the three-dimensional scattering pattern of plasmonic nanodisk chains by digital heterodyne holography,” Opt. Lett. 36, 849–851 (2011).
    [CrossRef]
  12. F. Ye, B. Qi, and L. Qian, “Continuous-wave fiber cavity ring-down measurements using frequency-shifted interferometry,” Opt. Lett. 36, 2080–2082 (2011).
    [CrossRef]
  13. B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, “Carrier-envelope phase stabilization with sub-10 as residual timing jitter,” Opt. Lett. 36, 4146–4148 (2011).
    [CrossRef]
  14. X. Wu, S. Nuccio, O. F. Yilmaz, J. Wang, A. Bogoni, and A. E. Willner, “Controllable optical demultiplexing using continuously tunable optical parametric delay at 160  Gbit/s with <0.1  ps resolution,” Opt. Lett. 34, 3926–3928 (2009).
    [CrossRef]
  15. F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85, 235403 (2012).
    [CrossRef]
  16. A. Barocsi, L. Jakab, and P. I. Richter, “Efficient, extremely low frequency acousto-optic shifter for optical heterodyning applications,” Proc. SPIE 2240, 108–113 (1994).
    [CrossRef]
  17. M. G. Gazalet, M. Ravez, F. Haine, C. Bruneel, and E. Bridoux, “Acousto-optic low-frequency shifter,” Appl. Opt. 33, 1293–1298 (1994).
    [CrossRef]
  18. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14, 1487–1496 (2006).
    [CrossRef]
  19. W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83, 083110 (2012).
    [CrossRef]
  20. C. H. Chang, R. K. Heilmann, M. L. Schattenburg, and P. Glenn, “Design of a double-pass shear mode acousto-optic modulator,” Rev. Sci. Instrum. 79, 033104 (2008).
    [CrossRef]
  21. J. C. Kastelik, H. Benaissa, S. Dupont, and M. Pommeray, “Acousto-optic tunable filter using double interaction for sidelobe reduction,” Appl. Opt. 48, C4–C10 (2009).
    [CrossRef]
  22. V. Kotov, J. Stiens, G. Shkerdin, and R. Vounckx, “Cascade acousto-optic frequency shift of light,” J. Opt. A 3, 517–520 (2001).
    [CrossRef]
  23. A. H. Mack, M. K. Trias, and S. G. J. Mochrie, “Precision optical trapping via a programmable direct-digital-synthesis-based controller for acousto-optic deflectors,” Rev. Sci. Instrum. 80, 016101 (2009).
    [CrossRef]
  24. V. Balakshy and A. Voloshin, “Acousto-optic interaction in crystals with large acoustic anisotropy,” Opt. Spectrosc. 110, 788–794 (2011).
    [CrossRef]
  25. H. Ogi, M. Fukunaga, M. Hirao, and H. Ledbetter, “Elastic constants, internal friction, and piezoelectric coefficient of alpha-TeO2,” Phys. Rev. B 69, 024104 (2004).
    [CrossRef]
  26. A. P. Gouzoulis and D. R. Pape, Design and Fabrication of Acousto-optics Devices (Dekker, 1994).
  27. J. C. Kastelik, S. Dupont, K. B. Yushkov, and J. Gazalet, “Frequency and angular bandwidth of acousto-optic deflectors with ultrasonic walk-off,” Ultrasonics 53, 219–224 (2013).
    [CrossRef]
  28. V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341–347 (2007).
    [CrossRef]
  29. I. C. Chang, “Acousto optic tunable filters,” Opt. Eng. 20, 206824 (1981).
    [CrossRef]

2013 (1)

J. C. Kastelik, S. Dupont, K. B. Yushkov, and J. Gazalet, “Frequency and angular bandwidth of acousto-optic deflectors with ultrasonic walk-off,” Ultrasonics 53, 219–224 (2013).
[CrossRef]

2012 (2)

F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85, 235403 (2012).
[CrossRef]

W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83, 083110 (2012).
[CrossRef]

2011 (5)

2010 (3)

2009 (3)

2008 (2)

S. Dupont and J. C. Kastelik, “Demonstration of a tunable two-frequency projected fringe pattern with acousto-optic deflectors,” Rev. Sci. Instrum. 79, 056101 (2008).
[CrossRef]

C. H. Chang, R. K. Heilmann, M. L. Schattenburg, and P. Glenn, “Design of a double-pass shear mode acousto-optic modulator,” Rev. Sci. Instrum. 79, 033104 (2008).
[CrossRef]

2007 (1)

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341–347 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (3)

H. Ogi, M. Fukunaga, M. Hirao, and H. Ledbetter, “Elastic constants, internal friction, and piezoelectric coefficient of alpha-TeO2,” Phys. Rev. B 69, 024104 (2004).
[CrossRef]

R. P. Kaczmarek, T. Rogowski, A. J. Antonczak, and K. M. Abramski, “Laser Doppler vibrometry with acoustooptic frequency shift,” Opt. Appl. 34, 373–384 (2004).

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004).
[CrossRef]

2003 (1)

2001 (1)

V. Kotov, J. Stiens, G. Shkerdin, and R. Vounckx, “Cascade acousto-optic frequency shift of light,” J. Opt. A 3, 517–520 (2001).
[CrossRef]

1999 (1)

1994 (2)

M. G. Gazalet, M. Ravez, F. Haine, C. Bruneel, and E. Bridoux, “Acousto-optic low-frequency shifter,” Appl. Opt. 33, 1293–1298 (1994).
[CrossRef]

A. Barocsi, L. Jakab, and P. I. Richter, “Efficient, extremely low frequency acousto-optic shifter for optical heterodyning applications,” Proc. SPIE 2240, 108–113 (1994).
[CrossRef]

1981 (1)

I. C. Chang, “Acousto optic tunable filters,” Opt. Eng. 20, 206824 (1981).
[CrossRef]

Abramski, K. M.

R. P. Kaczmarek, T. Rogowski, A. J. Antonczak, and K. M. Abramski, “Laser Doppler vibrometry with acoustooptic frequency shift,” Opt. Appl. 34, 373–384 (2004).

Antonczak, A. J.

R. P. Kaczmarek, T. Rogowski, A. J. Antonczak, and K. M. Abramski, “Laser Doppler vibrometry with acoustooptic frequency shift,” Opt. Appl. 34, 373–384 (2004).

Atlan, M.

Bachmann, A. H.

Balakshy, V.

V. Balakshy and A. Voloshin, “Acousto-optic interaction in crystals with large acoustic anisotropy,” Opt. Spectrosc. 110, 788–794 (2011).
[CrossRef]

Bardou, N.

Barocsi, A.

A. Barocsi, L. Jakab, and P. I. Richter, “Efficient, extremely low frequency acousto-optic shifter for optical heterodyning applications,” Proc. SPIE 2240, 108–113 (1994).
[CrossRef]

Benaissa, H.

Boccara, A. C.

Bogoni, A.

Borchers, B.

Borri, P.

F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85, 235403 (2012).
[CrossRef]

Bouma, B. E.

Bridoux, E.

Bruneel, C.

Chang, C. H.

C. H. Chang, R. K. Heilmann, M. L. Schattenburg, and P. Glenn, “Design of a double-pass shear mode acousto-optic modulator,” Rev. Sci. Instrum. 79, 033104 (2008).
[CrossRef]

Chang, I. C.

I. C. Chang, “Acousto optic tunable filters,” Opt. Eng. 20, 206824 (1981).
[CrossRef]

Colice, M.

Collin, S.

Dupont, S.

J. C. Kastelik, S. Dupont, K. B. Yushkov, and J. Gazalet, “Frequency and angular bandwidth of acousto-optic deflectors with ultrasonic walk-off,” Ultrasonics 53, 219–224 (2013).
[CrossRef]

J. C. Kastelik, H. Benaissa, S. Dupont, and M. Pommeray, “Acousto-optic tunable filter using double interaction for sidelobe reduction,” Appl. Opt. 48, C4–C10 (2009).
[CrossRef]

S. Dupont and J. C. Kastelik, “Demonstration of a tunable two-frequency projected fringe pattern with acousto-optic deflectors,” Rev. Sci. Instrum. 79, 056101 (2008).
[CrossRef]

Dupont, S. H.

S. H. Dupont, J. C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).

Forget, B. C.

Fu, Y.

Fukunaga, M.

H. Ogi, M. Fukunaga, M. Hirao, and H. Ledbetter, “Elastic constants, internal friction, and piezoelectric coefficient of alpha-TeO2,” Phys. Rev. B 69, 024104 (2004).
[CrossRef]

Gazalet, J.

J. C. Kastelik, S. Dupont, K. B. Yushkov, and J. Gazalet, “Frequency and angular bandwidth of acousto-optic deflectors with ultrasonic walk-off,” Ultrasonics 53, 219–224 (2013).
[CrossRef]

Gazalet, M. G.

Glenn, P.

C. H. Chang, R. K. Heilmann, M. L. Schattenburg, and P. Glenn, “Design of a double-pass shear mode acousto-optic modulator,” Rev. Sci. Instrum. 79, 033104 (2008).
[CrossRef]

Goetzinger, E.

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004).
[CrossRef]

Gouzoulis, A. P.

A. P. Gouzoulis and D. R. Pape, Design and Fabrication of Acousto-optics Devices (Dekker, 1994).

Gross, M.

Guo, M.

Ha, J. Y.

Haine, F.

He, Y.

J. Shang, S. Yan, L. Ren, S. Zhao, and Y. He, “Experiment study on heterodyne laser Doppler vibrometry with three different structures,” Proc. SPIE 8332, 833212 (2011).
[CrossRef]

Heilmann, R. K.

C. H. Chang, R. K. Heilmann, M. L. Schattenburg, and P. Glenn, “Design of a double-pass shear mode acousto-optic modulator,” Rev. Sci. Instrum. 79, 033104 (2008).
[CrossRef]

Herrmann, J.

Higbie, J. M.

W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83, 083110 (2012).
[CrossRef]

Hirao, M.

H. Ogi, M. Fukunaga, M. Hirao, and H. Ledbetter, “Elastic constants, internal friction, and piezoelectric coefficient of alpha-TeO2,” Phys. Rev. B 69, 024104 (2004).
[CrossRef]

Hitzenberger, C. K.

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004).
[CrossRef]

Husakou, A.

Jakab, L.

A. Barocsi, L. Jakab, and P. I. Richter, “Efficient, extremely low frequency acousto-optic shifter for optical heterodyning applications,” Proc. SPIE 2240, 108–113 (1994).
[CrossRef]

Kaczmarek, R. P.

R. P. Kaczmarek, T. Rogowski, A. J. Antonczak, and K. M. Abramski, “Laser Doppler vibrometry with acoustooptic frequency shift,” Opt. Appl. 34, 373–384 (2004).

Kastelik, J. C.

J. C. Kastelik, S. Dupont, K. B. Yushkov, and J. Gazalet, “Frequency and angular bandwidth of acousto-optic deflectors with ultrasonic walk-off,” Ultrasonics 53, 219–224 (2013).
[CrossRef]

S. H. Dupont, J. C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).

J. C. Kastelik, H. Benaissa, S. Dupont, and M. Pommeray, “Acousto-optic tunable filter using double interaction for sidelobe reduction,” Appl. Opt. 48, C4–C10 (2009).
[CrossRef]

S. Dupont and J. C. Kastelik, “Demonstration of a tunable two-frequency projected fringe pattern with acousto-optic deflectors,” Rev. Sci. Instrum. 79, 056101 (2008).
[CrossRef]

Kim, T.

Koke, S.

Kotov, V.

V. Kotov, J. Stiens, G. Shkerdin, and R. Vounckx, “Cascade acousto-optic frequency shift of light,” J. Opt. A 3, 517–520 (2001).
[CrossRef]

Langbein, W.

F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85, 235403 (2012).
[CrossRef]

Lasser, T.

Ledbetter, H.

H. Ogi, M. Fukunaga, M. Hirao, and H. Ledbetter, “Elastic constants, internal friction, and piezoelectric coefficient of alpha-TeO2,” Phys. Rev. B 69, 024104 (2004).
[CrossRef]

Leitgeb, R.

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004).
[CrossRef]

Leitgeb, R. A.

Linde, B. B. J.

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341–347 (2007).
[CrossRef]

Liu, L.

Mack, A. H.

A. H. Mack, M. K. Trias, and S. G. J. Mochrie, “Precision optical trapping via a programmable direct-digital-synthesis-based controller for acousto-optic deflectors,” Rev. Sci. Instrum. 80, 016101 (2009).
[CrossRef]

Masia, F.

F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85, 235403 (2012).
[CrossRef]

Mochrie, S. G. J.

A. H. Mack, M. K. Trias, and S. G. J. Mochrie, “Precision optical trapping via a programmable direct-digital-synthesis-based controller for acousto-optic deflectors,” Rev. Sci. Instrum. 80, 016101 (2009).
[CrossRef]

Nuccio, S.

Ogi, H.

H. Ogi, M. Fukunaga, M. Hirao, and H. Ledbetter, “Elastic constants, internal friction, and piezoelectric coefficient of alpha-TeO2,” Phys. Rev. B 69, 024104 (2004).
[CrossRef]

Oh, W. Y.

Pan, Y.

Pape, D. R.

A. P. Gouzoulis and D. R. Pape, Design and Fabrication of Acousto-optics Devices (Dekker, 1994).

Phua, P. B.

Pircher, M.

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004).
[CrossRef]

Pommeray, M.

S. H. Dupont, J. C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).

J. C. Kastelik, H. Benaissa, S. Dupont, and M. Pommeray, “Acousto-optic tunable filter using double interaction for sidelobe reduction,” Appl. Opt. 48, C4–C10 (2009).
[CrossRef]

Poon, T.-C.

Qi, B.

Qian, L.

Ramaz, F.

Ravez, M.

Ren, L.

J. Shang, S. Yan, L. Ren, S. Zhao, and Y. He, “Experiment study on heterodyne laser Doppler vibrometry with three different structures,” Proc. SPIE 8332, 833212 (2011).
[CrossRef]

Richter, P. I.

A. Barocsi, L. Jakab, and P. I. Richter, “Efficient, extremely low frequency acousto-optic shifter for optical heterodyning applications,” Proc. SPIE 2240, 108–113 (1994).
[CrossRef]

Rogowski, T.

R. P. Kaczmarek, T. Rogowski, A. J. Antonczak, and K. M. Abramski, “Laser Doppler vibrometry with acoustooptic frequency shift,” Opt. Appl. 34, 373–384 (2004).

Schattenburg, M. L.

C. H. Chang, R. K. Heilmann, M. L. Schattenburg, and P. Glenn, “Design of a double-pass shear mode acousto-optic modulator,” Rev. Sci. Instrum. 79, 033104 (2008).
[CrossRef]

Schwenger, W. J.

W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83, 083110 (2012).
[CrossRef]

Shang, J.

J. Shang, S. Yan, L. Ren, S. Zhao, and Y. He, “Experiment study on heterodyne laser Doppler vibrometry with three different structures,” Proc. SPIE 8332, 833212 (2011).
[CrossRef]

Shishkov, M.

Shkerdin, G.

V. Kotov, J. Stiens, G. Shkerdin, and R. Vounckx, “Cascade acousto-optic frequency shift of light,” J. Opt. A 3, 517–520 (2001).
[CrossRef]

Steinmeyer, G.

Stiens, J.

V. Kotov, J. Stiens, G. Shkerdin, and R. Vounckx, “Cascade acousto-optic frequency shift of light,” J. Opt. A 3, 517–520 (2001).
[CrossRef]

Suck, S. Y.

Tearney, G. J.

Tessier, G.

Trias, M. K.

A. H. Mack, M. K. Trias, and S. G. J. Mochrie, “Precision optical trapping via a programmable direct-digital-synthesis-based controller for acousto-optic deflectors,” Rev. Sci. Instrum. 80, 016101 (2009).
[CrossRef]

Voloshin, A.

V. Balakshy and A. Voloshin, “Acousto-optic interaction in crystals with large acoustic anisotropy,” Opt. Spectrosc. 110, 788–794 (2011).
[CrossRef]

Voloshinov, V. B.

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341–347 (2007).
[CrossRef]

Vounckx, R.

V. Kotov, J. Stiens, G. Shkerdin, and R. Vounckx, “Cascade acousto-optic frequency shift of light,” J. Opt. A 3, 517–520 (2001).
[CrossRef]

Wang, J.

Wang, Z.

Wilde, Y. D.

Willner, A. E.

Wu, X.

Xie, T.

Yan, S.

J. Shang, S. Yan, L. Ren, S. Zhao, and Y. He, “Experiment study on heterodyne laser Doppler vibrometry with three different structures,” Proc. SPIE 8332, 833212 (2011).
[CrossRef]

Ye, F.

Yilmaz, O. F.

Yoo, H.

Yushkov, K. B.

J. C. Kastelik, S. Dupont, K. B. Yushkov, and J. Gazalet, “Frequency and angular bandwidth of acousto-optic deflectors with ultrasonic walk-off,” Ultrasonics 53, 219–224 (2013).
[CrossRef]

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341–347 (2007).
[CrossRef]

Zhao, S.

J. Shang, S. Yan, L. Ren, S. Zhao, and Y. He, “Experiment study on heterodyne laser Doppler vibrometry with three different structures,” Proc. SPIE 8332, 833212 (2011).
[CrossRef]

Appl. Opt. (3)

IEEE/ASME Trans. Mechatronics (1)

S. H. Dupont, J. C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).

J. Opt. A (2)

V. Kotov, J. Stiens, G. Shkerdin, and R. Vounckx, “Cascade acousto-optic frequency shift of light,” J. Opt. A 3, 517–520 (2001).
[CrossRef]

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341–347 (2007).
[CrossRef]

Opt. Appl. (1)

R. P. Kaczmarek, T. Rogowski, A. J. Antonczak, and K. M. Abramski, “Laser Doppler vibrometry with acoustooptic frequency shift,” Opt. Appl. 34, 373–384 (2004).

Opt. Eng. (1)

I. C. Chang, “Acousto optic tunable filters,” Opt. Eng. 20, 206824 (1981).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Opt. Spectrosc. (1)

V. Balakshy and A. Voloshin, “Acousto-optic interaction in crystals with large acoustic anisotropy,” Opt. Spectrosc. 110, 788–794 (2011).
[CrossRef]

Phys. Med. Biol. (1)

M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004).
[CrossRef]

Phys. Rev. B (2)

F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85, 235403 (2012).
[CrossRef]

H. Ogi, M. Fukunaga, M. Hirao, and H. Ledbetter, “Elastic constants, internal friction, and piezoelectric coefficient of alpha-TeO2,” Phys. Rev. B 69, 024104 (2004).
[CrossRef]

Proc. SPIE (2)

A. Barocsi, L. Jakab, and P. I. Richter, “Efficient, extremely low frequency acousto-optic shifter for optical heterodyning applications,” Proc. SPIE 2240, 108–113 (1994).
[CrossRef]

J. Shang, S. Yan, L. Ren, S. Zhao, and Y. He, “Experiment study on heterodyne laser Doppler vibrometry with three different structures,” Proc. SPIE 8332, 833212 (2011).
[CrossRef]

Rev. Sci. Instrum. (4)

S. Dupont and J. C. Kastelik, “Demonstration of a tunable two-frequency projected fringe pattern with acousto-optic deflectors,” Rev. Sci. Instrum. 79, 056101 (2008).
[CrossRef]

W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83, 083110 (2012).
[CrossRef]

C. H. Chang, R. K. Heilmann, M. L. Schattenburg, and P. Glenn, “Design of a double-pass shear mode acousto-optic modulator,” Rev. Sci. Instrum. 79, 033104 (2008).
[CrossRef]

A. H. Mack, M. K. Trias, and S. G. J. Mochrie, “Precision optical trapping via a programmable direct-digital-synthesis-based controller for acousto-optic deflectors,” Rev. Sci. Instrum. 80, 016101 (2009).
[CrossRef]

Ultrasonics (1)

J. C. Kastelik, S. Dupont, K. B. Yushkov, and J. Gazalet, “Frequency and angular bandwidth of acousto-optic deflectors with ultrasonic walk-off,” Ultrasonics 53, 219–224 (2013).
[CrossRef]

Other (1)

A. P. Gouzoulis and D. R. Pape, Design and Fabrication of Acousto-optics Devices (Dekker, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Operating principle of the wide band low-frequency shifter.

Fig. 2.
Fig. 2.

Wave vector diagram of anisotropic interaction.

Fig. 3.
Fig. 3.

Anisotropic interaction in uniaxial crystal.

Fig. 4.
Fig. 4.

Incident angle versus ultrasonic frequency at synchronism for T-AOFS configuration.

Fig. 5.
Fig. 5.

T-AOFS frequency bandwidth for W=1cm. Bandwidth ripple depth: 0 dB (dot), 0.5dB (dash), and 3dB (solid).

Fig. 6.
Fig. 6.

Ultrasonic frequency versus incident angle for F-AOFS configuration.

Fig. 7.
Fig. 7.

Momentum mismatch due to variation of incident light beam angle in F-AOFS.

Fig. 8.
Fig. 8.

F-AOFS angular acceptance simulation for W=1cm (outside the crystal).

Fig. 9.
Fig. 9.

Momentum mismatch due to variation of ultrasonic frequency in F-AOFS.

Fig. 10.
Fig. 10.

Experimental setup.

Fig. 11.
Fig. 11.

Diffraction efficiency versus ultrasonic frequency for T-AOFS. (a) 0.5dB midband mismatch and (b) 3dB midband mismatch.

Fig. 12.
Fig. 12.

Diffraction efficiency versus ultrasonic frequency for F-AOFS.

Fig. 13.
Fig. 13.

Diffraction efficiency versus ultrasonic frequency for the cascaded components and a 3dB midband mismatch.

Fig. 14.
Fig. 14.

Diffraction efficiency versus ultrasonic frequency for the cascaded components and a 0.5dB midband mismatch.

Tables (1)

Tables Icon

Table 1. Main Characteristics of the Two Components

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

η(P,ΔΦ)=PP0sin2[π2(PP0+(ΔΦπ)2)1/2]PP0+(ΔΦπ)2,
ki+K+Δkd=kd,
n(θe)=no·ne(no2·sin2θe+ne2·cos2θe)1/2,
V(θa)=(c11c12)·cos2θa+2·c44·sin2θa2ρ,
ψ(θa)=arctan[2·c44c11c12·tanθa]θa.
δf=2Vnoλ0·W·(ΔΦmaxπ).
Δθd=λ0·Δfno·V.
δf25.61WinMHzforPP0=1,
δf16.31WinMHzforPP0=1.
ki·cos(θo+δθθa)=kd·cos(θeθa)+Δkd·cosψ;ki·sin(θo+δθθa)=kd·sin(θeθa)K+Δkd·sinψ.
Δθi1.45no·1WindegreeforPP0=1,
ki·cos(θo+δθθa)=kd·cos(θeθa)+Δkd·cosψ;ki·sin(θo+δθθa)=kd·sin(θeθa)KΔK+Δkd·sinψ.
δf0.37·1WinMHzforPP0=1,

Metrics