Abstract

We have developed epoxy-based, broadband antireflection coatings for millimeter-wave astrophysics experiments with cryogenic optics. By using multiple-layer coatings where each layer steps in dielectric constant, we achieved low reflection over a wide bandwidth. We suppressed the reflection from an alumina disk to 10% over fractional bandwidths of 92% and 104% using two-layer and three-layer coatings, respectively. The dielectric constants of epoxies were tuned between 2.06 and 7.44 by mixing three types of epoxy and doping with strontium titanate powder required for the high dielectric mixtures. At 140 K, the band-integrated absorption loss in the coatings was suppressed to less than 1% for the two-layer coating, and below 10% for the three-layer coating.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters

Yuki Inoue, Takaho Hamada, Masaya Hasegawa, Masashi Hazumi, Yasuto Hori, Aritoki Suzuki, Takayuki Tomaru, Tomotake Matsumura, Toshifumi Sakata, Tomoyuki Minamoto, and Tohru Hirai
Appl. Opt. 55(34) D22-D28 (2016)

Cryogenic infrared filter made of alumina for use at millimeter wavelength

Yuki Inoue, Tomotake Matsumura, Masashi Hazumi, Adrian T. Lee, Takahiro Okamura, Aritoki Suzuki, Takayuki Tomaru, and Hiroshi Yamaguchi
Appl. Opt. 53(9) 1727-1733 (2014)

Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths

R. Datta, C. D. Munson, M. D. Niemack, J. J. McMahon, J. Britton, E. J. Wollack, J. Beall, M. J. Devlin, J. Fowler, P. Gallardo, J. Hubmayr, K. Irwin, L. Newburgh, J. P. Nibarger, L. Page, M. A. Quijada, B. L. Schmitt, S. T. Staggs, R. Thornton, and L. Zhang
Appl. Opt. 52(36) 8747-8758 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription