Abstract

We demonstrate a variation of pump-probe spectroscopy that is particularly useful for laser frequency stabilization. The polarization-enhanced absorption spectroscopy (POLEAS) signal provides a significant improvement in signal-to-noise ratio over saturated absorption spectroscopy (SAS) for the important and commonly used atomic cycling transitions. The improvements can directly increase the short-term stability of a laser frequency lock, given sufficient servo loop bandwidth. The long-term stability of the POLEAS method, which is limited by environmental sensitivities, is comparable to that of SAS. The POLEAS signal is automatically Doppler-free, without requiring a separate Doppler subtraction beam, and lends itself to straightforward compact packaging. Finally, by increasing the amplitude of the desired (cycling) peak, while reducing the amplitude of all other peaks in the manifold, the POLEAS method eases the implementation of laser auto-locking schemes.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
    [CrossRef]
  2. W. Demtröder, Laser Spectroscopy (Springer, 2008).
  3. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
    [CrossRef]
  4. O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
    [CrossRef]
  5. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
    [CrossRef]
  6. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
    [CrossRef]
  7. Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, “Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor,” Appl. Opt. 42, 6645–6649 (2003).
    [CrossRef]
  8. V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
    [CrossRef]
  9. T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38, 986–988 (2013).
    [CrossRef]
  10. C. Javaux, I. G. Hughes, G. Lochead, J. Millen, and M. P. A. Jones, “Modulation-free pump-probe spectroscopy of strontium atoms,” Eur. Phys. J. D 57, 151–154 (2010).
    [CrossRef]
  11. P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285, 2851–2853 (2012).
    [CrossRef]
  12. C. Carr, C. S. Adams, and K. J. Weatherill, “Polarization spectroscopy of an excited state transition,” Opt. Lett. 37, 118–120 (2012).
    [CrossRef]
  13. V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
    [CrossRef]
  14. H.-R. Noh, G. Moon, and W. Jhe, “Discrimination of the effects of saturation and optical pumping in velocity-dependent pump-probe spectroscopy of rubidium: a simple analytical study,” Phys. Rev. 82, 062517 (2010).
    [CrossRef]
  15. G. Moon and H. R. Noh, “A comparison of the dependence of saturated absorption signals on pump beam diameter and intensity,” J. Opt. Soc. Am. B 25, 2101–2106 (2008).
    [CrossRef]
  16. G. Moon, M.-S. Heo, S. R. Shin, H.-R. Noh, and W. Jhe, “Calculation of analytic populations for a multilevel atom at low laser intensity,” Phys. Rev. 78, 015404 (2008).
    [CrossRef]
  17. G. Moon and H.-R. Noh, “Analytic calculation of linear susceptibility in velocity-dependent pump-probe spectroscopy,” Phys. Rev. 78, 032506 (2008).
    [CrossRef]
  18. H. D. Do, G. Moon, and H.-R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. 77, 032513 (2008).
    [CrossRef]
  19. G. Moon and H. R. Noh, “Analytic solutions for the saturated absorption spectra,” J. Opt. Soc. Am. B 25, 701–711 (2008).
    [CrossRef]
  20. D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004).
    [CrossRef]
  21. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
    [CrossRef]
  22. D. Groswasser, A. Waxman, M. Givon, G. Aviv, Y. Japha, M. Keil, and R. Folman, “Retroreflecting polarization spectroscopy enabling miniaturization,” Rev. Sci. Instrum. 80, 093103 (2009).
    [CrossRef]
  23. L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
    [CrossRef]
  24. H. Talvitie, M. Merimaa, and E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633  nm,” Opt. Commun. 152, 182–188 (1998).
    [CrossRef]
  25. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
    [CrossRef]

2013 (1)

2012 (3)

C. Carr, C. S. Adams, and K. J. Weatherill, “Polarization spectroscopy of an excited state transition,” Opt. Lett. 37, 118–120 (2012).
[CrossRef]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[CrossRef]

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285, 2851–2853 (2012).
[CrossRef]

2010 (2)

H.-R. Noh, G. Moon, and W. Jhe, “Discrimination of the effects of saturation and optical pumping in velocity-dependent pump-probe spectroscopy of rubidium: a simple analytical study,” Phys. Rev. 82, 062517 (2010).
[CrossRef]

C. Javaux, I. G. Hughes, G. Lochead, J. Millen, and M. P. A. Jones, “Modulation-free pump-probe spectroscopy of strontium atoms,” Eur. Phys. J. D 57, 151–154 (2010).
[CrossRef]

2009 (1)

D. Groswasser, A. Waxman, M. Givon, G. Aviv, Y. Japha, M. Keil, and R. Folman, “Retroreflecting polarization spectroscopy enabling miniaturization,” Rev. Sci. Instrum. 80, 093103 (2009).
[CrossRef]

2008 (5)

G. Moon, M.-S. Heo, S. R. Shin, H.-R. Noh, and W. Jhe, “Calculation of analytic populations for a multilevel atom at low laser intensity,” Phys. Rev. 78, 015404 (2008).
[CrossRef]

G. Moon and H.-R. Noh, “Analytic calculation of linear susceptibility in velocity-dependent pump-probe spectroscopy,” Phys. Rev. 78, 032506 (2008).
[CrossRef]

H. D. Do, G. Moon, and H.-R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. 77, 032513 (2008).
[CrossRef]

G. Moon and H. R. Noh, “Analytic solutions for the saturated absorption spectra,” J. Opt. Soc. Am. B 25, 701–711 (2008).
[CrossRef]

G. Moon and H. R. Noh, “A comparison of the dependence of saturated absorption signals on pump beam diameter and intensity,” J. Opt. Soc. Am. B 25, 2101–2106 (2008).
[CrossRef]

2006 (1)

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[CrossRef]

2004 (1)

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004).
[CrossRef]

2003 (1)

2002 (3)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

2000 (1)

V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
[CrossRef]

1998 (1)

H. Talvitie, M. Merimaa, and E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633  nm,” Opt. Commun. 152, 182–188 (1998).
[CrossRef]

1994 (1)

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

1992 (1)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

1976 (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Adams, C. S.

C. Carr, C. S. Adams, and K. J. Weatherill, “Polarization spectroscopy of an excited state transition,” Opt. Lett. 37, 118–120 (2012).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Andrews, L. R.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285, 2851–2853 (2012).
[CrossRef]

Aviv, G.

D. Groswasser, A. Waxman, M. Givon, G. Aviv, Y. Japha, M. Keil, and R. Folman, “Retroreflecting polarization spectroscopy enabling miniaturization,” Rev. Sci. Instrum. 80, 093103 (2009).
[CrossRef]

Budker, D.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
[CrossRef]

Busch, H. C.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285, 2851–2853 (2012).
[CrossRef]

Carr, C.

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[CrossRef]

Cox, S. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Davis, J. R.

V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy (Springer, 2008).

Do, H. D.

H. D. Do, G. Moon, and H.-R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. 77, 032513 (2008).
[CrossRef]

Folman, R.

D. Groswasser, A. Waxman, M. Givon, G. Aviv, Y. Japha, M. Keil, and R. Folman, “Retroreflecting polarization spectroscopy enabling miniaturization,” Rev. Sci. Instrum. 80, 093103 (2009).
[CrossRef]

Gawlik, W.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Givon, M.

D. Groswasser, A. Waxman, M. Givon, G. Aviv, Y. Japha, M. Keil, and R. Folman, “Retroreflecting polarization spectroscopy enabling miniaturization,” Rev. Sci. Instrum. 80, 093103 (2009).
[CrossRef]

Gong, W.

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[CrossRef]

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Groswasser, D.

D. Groswasser, A. Waxman, M. Givon, G. Aviv, Y. Japha, M. Keil, and R. Folman, “Retroreflecting polarization spectroscopy enabling miniaturization,” Rev. Sci. Instrum. 80, 093103 (2009).
[CrossRef]

Guo, H.

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[CrossRef]

Hänsch, T. W.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Hawthorn, C. J.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Heo, M.-S.

G. Moon, M.-S. Heo, S. R. Shin, H.-R. Noh, and W. Jhe, “Calculation of analytic populations for a multilevel atom at low laser intensity,” Phys. Rev. 78, 015404 (2008).
[CrossRef]

Hughes, I. G.

C. Javaux, I. G. Hughes, G. Lochead, J. Millen, and M. P. A. Jones, “Modulation-free pump-probe spectroscopy of strontium atoms,” Eur. Phys. J. D 57, 151–154 (2010).
[CrossRef]

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Ikonen, E.

H. Talvitie, M. Merimaa, and E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633  nm,” Opt. Commun. 152, 182–188 (1998).
[CrossRef]

Japha, Y.

D. Groswasser, A. Waxman, M. Givon, G. Aviv, Y. Japha, M. Keil, and R. Folman, “Retroreflecting polarization spectroscopy enabling miniaturization,” Rev. Sci. Instrum. 80, 093103 (2009).
[CrossRef]

Javaux, C.

C. Javaux, I. G. Hughes, G. Lochead, J. Millen, and M. P. A. Jones, “Modulation-free pump-probe spectroscopy of strontium atoms,” Eur. Phys. J. D 57, 151–154 (2010).
[CrossRef]

Jhe, W.

H.-R. Noh, G. Moon, and W. Jhe, “Discrimination of the effects of saturation and optical pumping in velocity-dependent pump-probe spectroscopy of rubidium: a simple analytical study,” Phys. Rev. 82, 062517 (2010).
[CrossRef]

G. Moon, M.-S. Heo, S. R. Shin, H.-R. Noh, and W. Jhe, “Calculation of analytic populations for a multilevel atom at low laser intensity,” Phys. Rev. 78, 015404 (2008).
[CrossRef]

Jones, M. P. A.

C. Javaux, I. G. Hughes, G. Lochead, J. Millen, and M. P. A. Jones, “Modulation-free pump-probe spectroscopy of strontium atoms,” Eur. Phys. J. D 57, 151–154 (2010).
[CrossRef]

Keil, M.

D. Groswasser, A. Waxman, M. Givon, G. Aviv, Y. Japha, M. Keil, and R. Folman, “Retroreflecting polarization spectroscopy enabling miniaturization,” Rev. Sci. Instrum. 80, 093103 (2009).
[CrossRef]

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[CrossRef]

Kimball, D. F.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Knaak, K.-M.

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

Kuga, T.

Kulatunga, P.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285, 2851–2853 (2012).
[CrossRef]

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[CrossRef]

Lin, Z.

Lochead, G.

C. Javaux, I. G. Hughes, G. Lochead, J. Millen, and M. P. A. Jones, “Modulation-free pump-probe spectroscopy of strontium atoms,” Eur. Phys. J. D 57, 151–154 (2010).
[CrossRef]

Luo, B.

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[CrossRef]

Mehendale, S. C.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[CrossRef]

Merimaa, M.

H. Talvitie, M. Merimaa, and E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633  nm,” Opt. Commun. 152, 182–188 (1998).
[CrossRef]

Meschede, D.

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

Millen, J.

C. Javaux, I. G. Hughes, G. Lochead, J. Millen, and M. P. A. Jones, “Modulation-free pump-probe spectroscopy of strontium atoms,” Eur. Phys. J. D 57, 151–154 (2010).
[CrossRef]

Mishra, S. R.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[CrossRef]

Moon, G.

H.-R. Noh, G. Moon, and W. Jhe, “Discrimination of the effects of saturation and optical pumping in velocity-dependent pump-probe spectroscopy of rubidium: a simple analytical study,” Phys. Rev. 82, 062517 (2010).
[CrossRef]

G. Moon and H.-R. Noh, “Analytic calculation of linear susceptibility in velocity-dependent pump-probe spectroscopy,” Phys. Rev. 78, 032506 (2008).
[CrossRef]

G. Moon, M.-S. Heo, S. R. Shin, H.-R. Noh, and W. Jhe, “Calculation of analytic populations for a multilevel atom at low laser intensity,” Phys. Rev. 78, 015404 (2008).
[CrossRef]

G. Moon and H. R. Noh, “A comparison of the dependence of saturated absorption signals on pump beam diameter and intensity,” J. Opt. Soc. Am. B 25, 2101–2106 (2008).
[CrossRef]

H. D. Do, G. Moon, and H.-R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. 77, 032513 (2008).
[CrossRef]

G. Moon and H. R. Noh, “Analytic solutions for the saturated absorption spectra,” J. Opt. Soc. Am. B 25, 701–711 (2008).
[CrossRef]

Mukae, T.

Noh, H. R.

Noh, H.-R.

H.-R. Noh, G. Moon, and W. Jhe, “Discrimination of the effects of saturation and optical pumping in velocity-dependent pump-probe spectroscopy of rubidium: a simple analytical study,” Phys. Rev. 82, 062517 (2010).
[CrossRef]

G. Moon, M.-S. Heo, S. R. Shin, H.-R. Noh, and W. Jhe, “Calculation of analytic populations for a multilevel atom at low laser intensity,” Phys. Rev. 78, 015404 (2008).
[CrossRef]

G. Moon and H.-R. Noh, “Analytic calculation of linear susceptibility in velocity-dependent pump-probe spectroscopy,” Phys. Rev. 78, 032506 (2008).
[CrossRef]

H. D. Do, G. Moon, and H.-R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. 77, 032513 (2008).
[CrossRef]

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Peng, X.

Rawat, H. S.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[CrossRef]

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[CrossRef]

Rochester, S. M.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Schmidt, O.

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

Scholten, R. E.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Shin, S. R.

G. Moon, M.-S. Heo, S. R. Shin, H.-R. Noh, and W. Jhe, “Calculation of analytic populations for a multilevel atom at low laser intensity,” Phys. Rev. 78, 015404 (2008).
[CrossRef]

Singh, S.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[CrossRef]

Smith, D. A.

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[CrossRef]

Sukenik, C. I.

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285, 2851–2853 (2012).
[CrossRef]

Talvitie, H.

H. Talvitie, M. Merimaa, and E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633  nm,” Opt. Commun. 152, 182–188 (1998).
[CrossRef]

Tiwari, V. B.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[CrossRef]

Torii, Y.

Turner, L. D.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Umeki, T.

Waxman, A.

D. Groswasser, A. Waxman, M. Givon, G. Aviv, Y. Japha, M. Keil, and R. Folman, “Retroreflecting polarization spectroscopy enabling miniaturization,” Rev. Sci. Instrum. 80, 093103 (2009).
[CrossRef]

Weatherill, K. J.

Weber, K. P.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Weis, A.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Wu, T.

Wynands, R.

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

Yashchuk, V. V.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
[CrossRef]

Ye, J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[CrossRef]

Yoshikawa, Y.

Zhan, Y.

Am. J. Phys. (2)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

Eur. Phys. J. D (1)

C. Javaux, I. G. Hughes, G. Lochead, J. Millen, and M. P. A. Jones, “Modulation-free pump-probe spectroscopy of strontium atoms,” Eur. Phys. J. D 57, 151–154 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002).
[CrossRef]

Nat. Photonics (1)

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[CrossRef]

Opt. Commun. (4)

P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285, 2851–2853 (2012).
[CrossRef]

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006).
[CrossRef]

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

H. Talvitie, M. Merimaa, and E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633  nm,” Opt. Commun. 152, 182–188 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (4)

H.-R. Noh, G. Moon, and W. Jhe, “Discrimination of the effects of saturation and optical pumping in velocity-dependent pump-probe spectroscopy of rubidium: a simple analytical study,” Phys. Rev. 82, 062517 (2010).
[CrossRef]

G. Moon, M.-S. Heo, S. R. Shin, H.-R. Noh, and W. Jhe, “Calculation of analytic populations for a multilevel atom at low laser intensity,” Phys. Rev. 78, 015404 (2008).
[CrossRef]

G. Moon and H.-R. Noh, “Analytic calculation of linear susceptibility in velocity-dependent pump-probe spectroscopy,” Phys. Rev. 78, 032506 (2008).
[CrossRef]

H. D. Do, G. Moon, and H.-R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. 77, 032513 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Rev. Mod. Phys. (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Rev. Sci. Instrum. (2)

V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000).
[CrossRef]

D. Groswasser, A. Waxman, M. Givon, G. Aviv, Y. Japha, M. Keil, and R. Folman, “Retroreflecting polarization spectroscopy enabling miniaturization,” Rev. Sci. Instrum. 80, 093103 (2009).
[CrossRef]

Other (1)

W. Demtröder, Laser Spectroscopy (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Rb87 D2 level diagram (not to scale) showing population optically pumped by σ+-polarized light to the |2,2 state. The numbers and dashed arrows show the allowed σ± transitions and their relative strengths. (b) Predicted spectra of the POLEAS apparatus. The dashed lines are the individual signals (with Doppler backgrounds removed and vertically offset for clarity) that would be detected by the two arms of the circular analyzer, and the solid line is the full POLEAS output signal of the Rb87 D2 F=2F manifold. Frequency units are natural linewidths (Γ=2π 6 MHz).

Fig. 2.
Fig. 2.

POLEAS apparatus. PBS, polarizing beam splitter; λ/4, quarter-wave plate; Pol, polarizer; M, mirror; BPD, balanced photodetector.

Fig. 3.
Fig. 3.

(a) Theoretically predicted spectra. (b) Experimental data. Dashed line is D-F SAS, and solid line is POLEAS taken under similar conditions. Units are the same for both figures.

Metrics