P. B. Kuhn, B. Ma, B. C. Connelly, M. D. Smooke, and M. B. Long, “Soot and thin-filament pyrometry using a color digital camera,” Proc. Combust. Inst. 33, 743–750 (2011).

[CrossRef]

P. M. Mandatori and O. L. Gulder, “Soot formation in laminar ethane diffusion flames at pressures from 0.2 to 3.3 MPa,” Proc. Combust. Inst. 33, 577–584 (2011).

[CrossRef]

D. Liu, Q. X. Huang, F. Wang, Y. Chi, K. F. Cen, and Y. H. Yan, “Simultaneous measurement of three-dimensional soot temperature and volume fraction fields in axisymmetric or asymmetric small unconfined flames with CCD Cameras,” Trans. ASME 132, 061202 (2010).

[CrossRef]

F. J. Diez, C. Aalburg, P. B. Sunderland, D. L. Urban, Z.-G. Yuan, and G. M. Faeth, “Soot properties of laminar jet diffusion flames in microgravity,” Combust. Flame 156, 1514–1524 (2009).

[CrossRef]

H. I. Joo and O. L. Gulder, “Soot formation and temperature field structure in co-flow laminar methane–air diffusion flames at pressures from 10 to 60 atm,” Proc. Combust. Inst. 32, 769–775 (2009).

[CrossRef]

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, “Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames,” Combust. Flame 138, 362–372 (2004).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, and R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).

[CrossRef]

D. L. Urban, Z.-G. Yuan, P. B. Sunderland, G. T. Linteris, J. E. Voss, K.-C. Lin, Z. Dai, K. Sun, and G. M. Faeth, “Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames,” AIAA J. 36, 1346–1360 (1998).

[CrossRef]

S. D. Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).

[CrossRef]

K. C. Smyth and C. R. Shaddix, “Brief communication: the elusive history of m=1.57–0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).

[CrossRef]

P. B. Sunderland and G. M. Faeth, “Soot formation in hydrocarbon/air laminar jet diffusion flames,” Combust. Flame 105, 132–146 (1996).

[CrossRef]

P. B. Sunderland, U. O. Koylu, and G. M. Faeth, “Soot formation in weakly buoyant acetylene-fueled laminar jet diffusion flames burning in air,” Combust. Flame 100, 310–322 (1995).

[CrossRef]

Y. Wang, P. Ding, and Y. Mu, “A spline approximation of the Abel transformation for use in optically-thick, cylindrically-symmetric plasmas,” J. Quant. Spectrosc. Radiat. Transfer 54, 1055–1058 (1995).

[CrossRef]

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).

[CrossRef]

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).

[CrossRef]

S. J. Young, “Iterative Abel inversion of optically thick, cylindrically symmetric radiation sources,” J. Quant. Spectrosc. Radiat. Transfer 25, 479–481 (1981).

[CrossRef]

S. C. Lee and C. L. Tien, “Optical constants of soot in hydrocarbon flames,” Symp. (Int.) Combust., [Proc.] 18, 1159–1166 (1981).

[CrossRef]

W. H. Dalzell, G. C. Williams, and H. C. Hottel, “A light-scattering method for concentration measurements,” Combust. Flame 14, 161–169 (1970).

[CrossRef]

F. J. Diez, C. Aalburg, P. B. Sunderland, D. L. Urban, Z.-G. Yuan, and G. M. Faeth, “Soot properties of laminar jet diffusion flames in microgravity,” Combust. Flame 156, 1514–1524 (2009).

[CrossRef]

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, “Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames,” Combust. Flame 138, 362–372 (2004).

[CrossRef]

S. D. Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).

[CrossRef]

S. D. Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).

[CrossRef]

D. Liu, Q. X. Huang, F. Wang, Y. Chi, K. F. Cen, and Y. H. Yan, “Simultaneous measurement of three-dimensional soot temperature and volume fraction fields in axisymmetric or asymmetric small unconfined flames with CCD Cameras,” Trans. ASME 132, 061202 (2010).

[CrossRef]

D. Liu, Q. X. Huang, F. Wang, Y. Chi, K. F. Cen, and Y. H. Yan, “Simultaneous measurement of three-dimensional soot temperature and volume fraction fields in axisymmetric or asymmetric small unconfined flames with CCD Cameras,” Trans. ASME 132, 061202 (2010).

[CrossRef]

S. D. Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).

[CrossRef]

B. B. Connelly, S. A. Kaiser, M. D. Smooke, and M. B. Long, “Two-dimensional soot pyrometry with a color digital camera,” Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pennsylvania, USA, March2005.

P. B. Kuhn, B. Ma, B. C. Connelly, M. D. Smooke, and M. B. Long, “Soot and thin-filament pyrometry using a color digital camera,” Proc. Combust. Inst. 33, 743–750 (2011).

[CrossRef]

D. L. Urban, Z.-G. Yuan, P. B. Sunderland, G. T. Linteris, J. E. Voss, K.-C. Lin, Z. Dai, K. Sun, and G. M. Faeth, “Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames,” AIAA J. 36, 1346–1360 (1998).

[CrossRef]

W. H. Dalzell, G. C. Williams, and H. C. Hottel, “A light-scattering method for concentration measurements,” Combust. Flame 14, 161–169 (1970).

[CrossRef]

F. J. Diez, C. Aalburg, P. B. Sunderland, D. L. Urban, Z.-G. Yuan, and G. M. Faeth, “Soot properties of laminar jet diffusion flames in microgravity,” Combust. Flame 156, 1514–1524 (2009).

[CrossRef]

Y. Wang, P. Ding, and Y. Mu, “A spline approximation of the Abel transformation for use in optically-thick, cylindrically-symmetric plasmas,” J. Quant. Spectrosc. Radiat. Transfer 54, 1055–1058 (1995).

[CrossRef]

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).

[CrossRef]

F. J. Diez, C. Aalburg, P. B. Sunderland, D. L. Urban, Z.-G. Yuan, and G. M. Faeth, “Soot properties of laminar jet diffusion flames in microgravity,” Combust. Flame 156, 1514–1524 (2009).

[CrossRef]

D. L. Urban, Z.-G. Yuan, P. B. Sunderland, G. T. Linteris, J. E. Voss, K.-C. Lin, Z. Dai, K. Sun, and G. M. Faeth, “Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames,” AIAA J. 36, 1346–1360 (1998).

[CrossRef]

P. B. Sunderland and G. M. Faeth, “Soot formation in hydrocarbon/air laminar jet diffusion flames,” Combust. Flame 105, 132–146 (1996).

[CrossRef]

P. B. Sunderland, U. O. Koylu, and G. M. Faeth, “Soot formation in weakly buoyant acetylene-fueled laminar jet diffusion flames burning in air,” Combust. Flame 100, 310–322 (1995).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, and R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).

[CrossRef]

P. M. Mandatori and O. L. Gulder, “Soot formation in laminar ethane diffusion flames at pressures from 0.2 to 3.3 MPa,” Proc. Combust. Inst. 33, 577–584 (2011).

[CrossRef]

H. I. Joo and O. L. Gulder, “Soot formation and temperature field structure in co-flow laminar methane–air diffusion flames at pressures from 10 to 60 atm,” Proc. Combust. Inst. 32, 769–775 (2009).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, and R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, and O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).

[CrossRef]

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).

[CrossRef]

W. H. Dalzell, G. C. Williams, and H. C. Hottel, “A light-scattering method for concentration measurements,” Combust. Flame 14, 161–169 (1970).

[CrossRef]

D. Liu, Q. X. Huang, F. Wang, Y. Chi, K. F. Cen, and Y. H. Yan, “Simultaneous measurement of three-dimensional soot temperature and volume fraction fields in axisymmetric or asymmetric small unconfined flames with CCD Cameras,” Trans. ASME 132, 061202 (2010).

[CrossRef]

S. D. Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).

[CrossRef]

H. I. Joo and O. L. Gulder, “Soot formation and temperature field structure in co-flow laminar methane–air diffusion flames at pressures from 10 to 60 atm,” Proc. Combust. Inst. 32, 769–775 (2009).

[CrossRef]

B. B. Connelly, S. A. Kaiser, M. D. Smooke, and M. B. Long, “Two-dimensional soot pyrometry with a color digital camera,” Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pennsylvania, USA, March2005.

Y. Matsui, T. Kamimoto, and S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a D.I. diesel engine by the two-color method,” SAE Technical Paper 790491, 1808–1822, (1979).

P. B. Sunderland, U. O. Koylu, and G. M. Faeth, “Soot formation in weakly buoyant acetylene-fueled laminar jet diffusion flames burning in air,” Combust. Flame 100, 310–322 (1995).

[CrossRef]

P. B. Kuhn, B. Ma, B. C. Connelly, M. D. Smooke, and M. B. Long, “Soot and thin-filament pyrometry using a color digital camera,” Proc. Combust. Inst. 33, 743–750 (2011).

[CrossRef]

S. C. Lee and C. L. Tien, “Optical constants of soot in hydrocarbon flames,” Symp. (Int.) Combust., [Proc.] 18, 1159–1166 (1981).

[CrossRef]

D. L. Urban, Z.-G. Yuan, P. B. Sunderland, G. T. Linteris, J. E. Voss, K.-C. Lin, Z. Dai, K. Sun, and G. M. Faeth, “Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames,” AIAA J. 36, 1346–1360 (1998).

[CrossRef]

D. L. Urban, Z.-G. Yuan, P. B. Sunderland, G. T. Linteris, J. E. Voss, K.-C. Lin, Z. Dai, K. Sun, and G. M. Faeth, “Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames,” AIAA J. 36, 1346–1360 (1998).

[CrossRef]

D. Liu, Q. X. Huang, F. Wang, Y. Chi, K. F. Cen, and Y. H. Yan, “Simultaneous measurement of three-dimensional soot temperature and volume fraction fields in axisymmetric or asymmetric small unconfined flames with CCD Cameras,” Trans. ASME 132, 061202 (2010).

[CrossRef]

P. B. Kuhn, B. Ma, B. C. Connelly, M. D. Smooke, and M. B. Long, “Soot and thin-filament pyrometry using a color digital camera,” Proc. Combust. Inst. 33, 743–750 (2011).

[CrossRef]

B. B. Connelly, S. A. Kaiser, M. D. Smooke, and M. B. Long, “Two-dimensional soot pyrometry with a color digital camera,” Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pennsylvania, USA, March2005.

P. B. Kuhn, B. Ma, B. C. Connelly, M. D. Smooke, and M. B. Long, “Soot and thin-filament pyrometry using a color digital camera,” Proc. Combust. Inst. 33, 743–750 (2011).

[CrossRef]

P. M. Mandatori and O. L. Gulder, “Soot formation in laminar ethane diffusion flames at pressures from 0.2 to 3.3 MPa,” Proc. Combust. Inst. 33, 577–584 (2011).

[CrossRef]

Y. Matsui, T. Kamimoto, and S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a D.I. diesel engine by the two-color method,” SAE Technical Paper 790491, 1808–1822, (1979).

Y. Matsui, T. Kamimoto, and S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a D.I. diesel engine by the two-color method,” SAE Technical Paper 790491, 1808–1822, (1979).

Y. Wang, P. Ding, and Y. Mu, “A spline approximation of the Abel transformation for use in optically-thick, cylindrically-symmetric plasmas,” J. Quant. Spectrosc. Radiat. Transfer 54, 1055–1058 (1995).

[CrossRef]

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, “Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames,” Combust. Flame 138, 362–372 (2004).

[CrossRef]

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, “Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames,” Combust. Flame 138, 362–372 (2004).

[CrossRef]

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).

[CrossRef]

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).

[CrossRef]

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).

[CrossRef]

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).

[CrossRef]

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, “Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames,” Combust. Flame 138, 362–372 (2004).

[CrossRef]

K. C. Smyth and C. R. Shaddix, “Brief communication: the elusive history of m=1.57–0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, and R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, and O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).

[CrossRef]

P. B. Kuhn, B. Ma, B. C. Connelly, M. D. Smooke, and M. B. Long, “Soot and thin-filament pyrometry using a color digital camera,” Proc. Combust. Inst. 33, 743–750 (2011).

[CrossRef]

B. B. Connelly, S. A. Kaiser, M. D. Smooke, and M. B. Long, “Two-dimensional soot pyrometry with a color digital camera,” Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pennsylvania, USA, March2005.

K. C. Smyth and C. R. Shaddix, “Brief communication: the elusive history of m=1.57–0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, and R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, and O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).

[CrossRef]

D. L. Urban, Z.-G. Yuan, P. B. Sunderland, G. T. Linteris, J. E. Voss, K.-C. Lin, Z. Dai, K. Sun, and G. M. Faeth, “Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames,” AIAA J. 36, 1346–1360 (1998).

[CrossRef]

F. J. Diez, C. Aalburg, P. B. Sunderland, D. L. Urban, Z.-G. Yuan, and G. M. Faeth, “Soot properties of laminar jet diffusion flames in microgravity,” Combust. Flame 156, 1514–1524 (2009).

[CrossRef]

J. D. Maun, P. B. Sunderland, and D. L. Urban, “Thin-filament pyrometry with a digital still camera,” Appl. Opt. 46, 483–488 (2007).

[CrossRef]

D. L. Urban, Z.-G. Yuan, P. B. Sunderland, G. T. Linteris, J. E. Voss, K.-C. Lin, Z. Dai, K. Sun, and G. M. Faeth, “Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames,” AIAA J. 36, 1346–1360 (1998).

[CrossRef]

P. B. Sunderland and G. M. Faeth, “Soot formation in hydrocarbon/air laminar jet diffusion flames,” Combust. Flame 105, 132–146 (1996).

[CrossRef]

P. B. Sunderland, U. O. Koylu, and G. M. Faeth, “Soot formation in weakly buoyant acetylene-fueled laminar jet diffusion flames burning in air,” Combust. Flame 100, 310–322 (1995).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, and R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, and O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).

[CrossRef]

S. C. Lee and C. L. Tien, “Optical constants of soot in hydrocarbon flames,” Symp. (Int.) Combust., [Proc.] 18, 1159–1166 (1981).

[CrossRef]

F. J. Diez, C. Aalburg, P. B. Sunderland, D. L. Urban, Z.-G. Yuan, and G. M. Faeth, “Soot properties of laminar jet diffusion flames in microgravity,” Combust. Flame 156, 1514–1524 (2009).

[CrossRef]

J. D. Maun, P. B. Sunderland, and D. L. Urban, “Thin-filament pyrometry with a digital still camera,” Appl. Opt. 46, 483–488 (2007).

[CrossRef]

D. L. Urban, Z.-G. Yuan, P. B. Sunderland, G. T. Linteris, J. E. Voss, K.-C. Lin, Z. Dai, K. Sun, and G. M. Faeth, “Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames,” AIAA J. 36, 1346–1360 (1998).

[CrossRef]

D. L. Urban, Z.-G. Yuan, P. B. Sunderland, G. T. Linteris, J. E. Voss, K.-C. Lin, Z. Dai, K. Sun, and G. M. Faeth, “Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames,” AIAA J. 36, 1346–1360 (1998).

[CrossRef]

D. Liu, Q. X. Huang, F. Wang, Y. Chi, K. F. Cen, and Y. H. Yan, “Simultaneous measurement of three-dimensional soot temperature and volume fraction fields in axisymmetric or asymmetric small unconfined flames with CCD Cameras,” Trans. ASME 132, 061202 (2010).

[CrossRef]

Y. Wang, P. Ding, and Y. Mu, “A spline approximation of the Abel transformation for use in optically-thick, cylindrically-symmetric plasmas,” J. Quant. Spectrosc. Radiat. Transfer 54, 1055–1058 (1995).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, and R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).

[CrossRef]

W. H. Dalzell, G. C. Williams, and H. C. Hottel, “A light-scattering method for concentration measurements,” Combust. Flame 14, 161–169 (1970).

[CrossRef]

D. Liu, Q. X. Huang, F. Wang, Y. Chi, K. F. Cen, and Y. H. Yan, “Simultaneous measurement of three-dimensional soot temperature and volume fraction fields in axisymmetric or asymmetric small unconfined flames with CCD Cameras,” Trans. ASME 132, 061202 (2010).

[CrossRef]

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).

[CrossRef]

S. J. Young, “Iterative Abel inversion of optically thick, cylindrically symmetric radiation sources,” J. Quant. Spectrosc. Radiat. Transfer 25, 479–481 (1981).

[CrossRef]

F. J. Diez, C. Aalburg, P. B. Sunderland, D. L. Urban, Z.-G. Yuan, and G. M. Faeth, “Soot properties of laminar jet diffusion flames in microgravity,” Combust. Flame 156, 1514–1524 (2009).

[CrossRef]

D. L. Urban, Z.-G. Yuan, P. B. Sunderland, G. T. Linteris, J. E. Voss, K.-C. Lin, Z. Dai, K. Sun, and G. M. Faeth, “Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames,” AIAA J. 36, 1346–1360 (1998).

[CrossRef]

Z.-G. Yuan, “The filtered Abel transform and its application in combustion diagnostics,” Western States Section of the Combustion Institute, Stanford, CA, USA, October, 1995.

S. D. Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, and R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).

[CrossRef]

D. L. Urban, Z.-G. Yuan, P. B. Sunderland, G. T. Linteris, J. E. Voss, K.-C. Lin, Z. Dai, K. Sun, and G. M. Faeth, “Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames,” AIAA J. 36, 1346–1360 (1998).

[CrossRef]

T. Fu, X. Cheng, and Z. Yang, “Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics,” Appl. Opt. 47, 6112–6123 (2008).

[CrossRef]

P. S. Greenberg and J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).

[CrossRef]

P. Elder, T. Jerrick, and J. W. Birkeland, “Determination of the radial profile of absorption and emission coefficients and temperature in cylindrically symmetric sources with self-absorption,” Appl. Opt. 4, 589–592 (1965).

[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, and O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).

[CrossRef]

J. D. Maun, P. B. Sunderland, and D. L. Urban, “Thin-filament pyrometry with a digital still camera,” Appl. Opt. 46, 483–488 (2007).

[CrossRef]

W. H. Dalzell, G. C. Williams, and H. C. Hottel, “A light-scattering method for concentration measurements,” Combust. Flame 14, 161–169 (1970).

[CrossRef]

K. C. Smyth and C. R. Shaddix, “Brief communication: the elusive history of m=1.57–0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).

[CrossRef]

C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, “Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames,” Combust. Flame 138, 362–372 (2004).

[CrossRef]

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).

[CrossRef]

S. D. Iuliis, M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).

[CrossRef]

F. J. Diez, C. Aalburg, P. B. Sunderland, D. L. Urban, Z.-G. Yuan, and G. M. Faeth, “Soot properties of laminar jet diffusion flames in microgravity,” Combust. Flame 156, 1514–1524 (2009).

[CrossRef]

P. B. Sunderland, U. O. Koylu, and G. M. Faeth, “Soot formation in weakly buoyant acetylene-fueled laminar jet diffusion flames burning in air,” Combust. Flame 100, 310–322 (1995).

[CrossRef]

P. B. Sunderland and G. M. Faeth, “Soot formation in hydrocarbon/air laminar jet diffusion flames,” Combust. Flame 105, 132–146 (1996).

[CrossRef]

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).

[CrossRef]

S. J. Young, “Iterative Abel inversion of optically thick, cylindrically symmetric radiation sources,” J. Quant. Spectrosc. Radiat. Transfer 25, 479–481 (1981).

[CrossRef]

Y. Wang, P. Ding, and Y. Mu, “A spline approximation of the Abel transformation for use in optically-thick, cylindrically-symmetric plasmas,” J. Quant. Spectrosc. Radiat. Transfer 54, 1055–1058 (1995).

[CrossRef]

H. I. Joo and O. L. Gulder, “Soot formation and temperature field structure in co-flow laminar methane–air diffusion flames at pressures from 10 to 60 atm,” Proc. Combust. Inst. 32, 769–775 (2009).

[CrossRef]

P. M. Mandatori and O. L. Gulder, “Soot formation in laminar ethane diffusion flames at pressures from 0.2 to 3.3 MPa,” Proc. Combust. Inst. 33, 577–584 (2011).

[CrossRef]

P. B. Kuhn, B. Ma, B. C. Connelly, M. D. Smooke, and M. B. Long, “Soot and thin-filament pyrometry using a color digital camera,” Proc. Combust. Inst. 33, 743–750 (2011).

[CrossRef]

S. C. Lee and C. L. Tien, “Optical constants of soot in hydrocarbon flames,” Symp. (Int.) Combust., [Proc.] 18, 1159–1166 (1981).

[CrossRef]

D. Liu, Q. X. Huang, F. Wang, Y. Chi, K. F. Cen, and Y. H. Yan, “Simultaneous measurement of three-dimensional soot temperature and volume fraction fields in axisymmetric or asymmetric small unconfined flames with CCD Cameras,” Trans. ASME 132, 061202 (2010).

[CrossRef]

D. Coffin, “Decoding raw digital photos in Linux,” http://www.cybercom.net/~dcoffin/dcraw/ .

B. B. Connelly, S. A. Kaiser, M. D. Smooke, and M. B. Long, “Two-dimensional soot pyrometry with a color digital camera,” Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pennsylvania, USA, March2005.

Y. Matsui, T. Kamimoto, and S. Matsuoka, “A study on the time and space resolved measurement of flame temperature and soot concentration in a D.I. diesel engine by the two-color method,” SAE Technical Paper 790491, 1808–1822, (1979).

Z.-G. Yuan, “The filtered Abel transform and its application in combustion diagnostics,” Western States Section of the Combustion Institute, Stanford, CA, USA, October, 1995.