Abstract

This paper presents an optimum method that exploits the principle of diffuse scattering and employs the least squares method (LSM) to apply and remove a shaped-function signal for low-light-level image detection. With the help of a sawtooth-shaped-function light signal applied to an image sensor, the LSM is employed to remove the sawtooth signal from the captured images and restore the weak image signal. The experiment process and result verify that this method can not only maintain the capability of upgrading the image sensor’s sensitivity and signal-to-noise ratio like the previous method, but it also can improve the imaging speed in the low-light level, decrease the computation cost of the extraction process, and eliminate the influence of the environment light to satisfy the requirement of long-distance detection.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kamrani, M. Hammady, F. Lesage, and M. Sawan, “Modeling and characterizing optical CMOS sensors for biomedical low-intensity light detection,” in Proceedings of the 29th Southern Biomedical Engineering Conference (IEEE, 2013), pp. 83–84.
  2. Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
    [CrossRef]
  3. S. H. Yang, M. Guo, B. K. Li, J. T. Xia, Q. S. Wang, and F. R. Sun, “Design of high resolution high sensitivity EMCCD camera,” in Proceedings of the International Conference on Intelligent System Design and Engineering Application (IEEE, 2012), pp. 1212–1216.
  4. P. Wu, N. Nelson, and Y. Tseng, “A general method for improving spatial resolution by optimization of electron multiplication in CCD imaging,” Opt. Express A18, 5199–5212 (2010).
    [CrossRef]
  5. M. Carbillet and A. Riccardi, “Low-light-level charge-coupled devices for pyramid wavefront sensing on 8 m class telescopes: what actual gain?” Appl. Opt. 49, G167–G173 (2010).
    [CrossRef]
  6. N. Faramarzpour, M. Jarmal Deen, S. Shirani, Q. Fang, L. W. C. Liu, F. de Souza Campos, and J. W. Swart, “CMOS-based active pixel for low-light-level detection: analysis and measurements,” IEEE Trans. Electron Dev. A54, 3229–3237 (2007).
    [CrossRef]
  7. C. Trinh, “Low light signal detection and intrinsic noise sources,” Physics 111 Library, 2006, http://ugastro.berkeley.edu/~ctrinh/papers/lls.pdf .
  8. G. Li, M. Zhou, F. He, and L. Lin, “A novel algorithm combining oversampling and digital lock-in amplifier of high speed and precision,” Rev. Sci. Instrum. A82, 095106 (2011).
    [CrossRef]
  9. S. Lee, V. Maik, J. Jang, J. Shin, and J. Paik, “Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images,” IEEE Trans. Consum. Electron. A51, 648–653 (2005).
  10. Z. P. Jiang, X. G. Xu, and X. C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. A39, 2982–2987 (2000).
    [CrossRef]
  11. S. Dhokkar, B. Serio, P. Lagonotte, and P. Meyrueis, “Power transistor near-infrared microthermography using an intensified CCD camera and frame integration,” Meas. Sci. Technol. A18, 2696–2703 (2007).
    [CrossRef]
  12. G. Li, H. Tang, D. Kim, J. Gao, and L. Lin, “Employment of frame accumulation and shaped function for upgrading low-light-level image detection sensitivity,” Opt. Lett. A37, 1361–1363 (2012).
    [CrossRef]
  13. G. Li, L. J. Zhang, and L. Lin, “Weak signal detection based on over-sampling and saw-tooth shaped function,” Acta Electronica Sinica 36, 756–759 (2008).
  14. G. Li, H. Y. Tang, and L. Lin, “Employment of oversampling and shaped function for improving detection sensitivity,” J. Tianjin Univ. 43, 901–905 (2010).

2012

G. Li, H. Tang, D. Kim, J. Gao, and L. Lin, “Employment of frame accumulation and shaped function for upgrading low-light-level image detection sensitivity,” Opt. Lett. A37, 1361–1363 (2012).
[CrossRef]

2011

G. Li, M. Zhou, F. He, and L. Lin, “A novel algorithm combining oversampling and digital lock-in amplifier of high speed and precision,” Rev. Sci. Instrum. A82, 095106 (2011).
[CrossRef]

2010

G. Li, H. Y. Tang, and L. Lin, “Employment of oversampling and shaped function for improving detection sensitivity,” J. Tianjin Univ. 43, 901–905 (2010).

P. Wu, N. Nelson, and Y. Tseng, “A general method for improving spatial resolution by optimization of electron multiplication in CCD imaging,” Opt. Express A18, 5199–5212 (2010).
[CrossRef]

M. Carbillet and A. Riccardi, “Low-light-level charge-coupled devices for pyramid wavefront sensing on 8 m class telescopes: what actual gain?” Appl. Opt. 49, G167–G173 (2010).
[CrossRef]

2009

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

2008

G. Li, L. J. Zhang, and L. Lin, “Weak signal detection based on over-sampling and saw-tooth shaped function,” Acta Electronica Sinica 36, 756–759 (2008).

2007

N. Faramarzpour, M. Jarmal Deen, S. Shirani, Q. Fang, L. W. C. Liu, F. de Souza Campos, and J. W. Swart, “CMOS-based active pixel for low-light-level detection: analysis and measurements,” IEEE Trans. Electron Dev. A54, 3229–3237 (2007).
[CrossRef]

S. Dhokkar, B. Serio, P. Lagonotte, and P. Meyrueis, “Power transistor near-infrared microthermography using an intensified CCD camera and frame integration,” Meas. Sci. Technol. A18, 2696–2703 (2007).
[CrossRef]

2005

S. Lee, V. Maik, J. Jang, J. Shin, and J. Paik, “Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images,” IEEE Trans. Consum. Electron. A51, 648–653 (2005).

2000

Z. P. Jiang, X. G. Xu, and X. C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. A39, 2982–2987 (2000).
[CrossRef]

Carbillet, M.

Chuang, F. S.

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

de Souza Campos, F.

N. Faramarzpour, M. Jarmal Deen, S. Shirani, Q. Fang, L. W. C. Liu, F. de Souza Campos, and J. W. Swart, “CMOS-based active pixel for low-light-level detection: analysis and measurements,” IEEE Trans. Electron Dev. A54, 3229–3237 (2007).
[CrossRef]

Dhokkar, S.

S. Dhokkar, B. Serio, P. Lagonotte, and P. Meyrueis, “Power transistor near-infrared microthermography using an intensified CCD camera and frame integration,” Meas. Sci. Technol. A18, 2696–2703 (2007).
[CrossRef]

Elson, D. S.

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

Fang, Q.

N. Faramarzpour, M. Jarmal Deen, S. Shirani, Q. Fang, L. W. C. Liu, F. de Souza Campos, and J. W. Swart, “CMOS-based active pixel for low-light-level detection: analysis and measurements,” IEEE Trans. Electron Dev. A54, 3229–3237 (2007).
[CrossRef]

Faramarzpour, N.

N. Faramarzpour, M. Jarmal Deen, S. Shirani, Q. Fang, L. W. C. Liu, F. de Souza Campos, and J. W. Swart, “CMOS-based active pixel for low-light-level detection: analysis and measurements,” IEEE Trans. Electron Dev. A54, 3229–3237 (2007).
[CrossRef]

Farwell, D. G.

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

Gao, J.

G. Li, H. Tang, D. Kim, J. Gao, and L. Lin, “Employment of frame accumulation and shaped function for upgrading low-light-level image detection sensitivity,” Opt. Lett. A37, 1361–1363 (2012).
[CrossRef]

Guo, M.

S. H. Yang, M. Guo, B. K. Li, J. T. Xia, Q. S. Wang, and F. R. Sun, “Design of high resolution high sensitivity EMCCD camera,” in Proceedings of the International Conference on Intelligent System Design and Engineering Application (IEEE, 2012), pp. 1212–1216.

Hammady, M.

E. Kamrani, M. Hammady, F. Lesage, and M. Sawan, “Modeling and characterizing optical CMOS sensors for biomedical low-intensity light detection,” in Proceedings of the 29th Southern Biomedical Engineering Conference (IEEE, 2013), pp. 83–84.

He, F.

G. Li, M. Zhou, F. He, and L. Lin, “A novel algorithm combining oversampling and digital lock-in amplifier of high speed and precision,” Rev. Sci. Instrum. A82, 095106 (2011).
[CrossRef]

Jang, J.

S. Lee, V. Maik, J. Jang, J. Shin, and J. Paik, “Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images,” IEEE Trans. Consum. Electron. A51, 648–653 (2005).

Jarmal Deen, M.

N. Faramarzpour, M. Jarmal Deen, S. Shirani, Q. Fang, L. W. C. Liu, F. de Souza Campos, and J. W. Swart, “CMOS-based active pixel for low-light-level detection: analysis and measurements,” IEEE Trans. Electron Dev. A54, 3229–3237 (2007).
[CrossRef]

Jiang, Z. P.

Z. P. Jiang, X. G. Xu, and X. C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. A39, 2982–2987 (2000).
[CrossRef]

Kamrani, E.

E. Kamrani, M. Hammady, F. Lesage, and M. Sawan, “Modeling and characterizing optical CMOS sensors for biomedical low-intensity light detection,” in Proceedings of the 29th Southern Biomedical Engineering Conference (IEEE, 2013), pp. 83–84.

Kim, D.

G. Li, H. Tang, D. Kim, J. Gao, and L. Lin, “Employment of frame accumulation and shaped function for upgrading low-light-level image detection sensitivity,” Opt. Lett. A37, 1361–1363 (2012).
[CrossRef]

Lagonotte, P.

S. Dhokkar, B. Serio, P. Lagonotte, and P. Meyrueis, “Power transistor near-infrared microthermography using an intensified CCD camera and frame integration,” Meas. Sci. Technol. A18, 2696–2703 (2007).
[CrossRef]

Lee, S.

S. Lee, V. Maik, J. Jang, J. Shin, and J. Paik, “Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images,” IEEE Trans. Consum. Electron. A51, 648–653 (2005).

Lesage, F.

E. Kamrani, M. Hammady, F. Lesage, and M. Sawan, “Modeling and characterizing optical CMOS sensors for biomedical low-intensity light detection,” in Proceedings of the 29th Southern Biomedical Engineering Conference (IEEE, 2013), pp. 83–84.

Li, B. K.

S. H. Yang, M. Guo, B. K. Li, J. T. Xia, Q. S. Wang, and F. R. Sun, “Design of high resolution high sensitivity EMCCD camera,” in Proceedings of the International Conference on Intelligent System Design and Engineering Application (IEEE, 2012), pp. 1212–1216.

Li, G.

G. Li, H. Tang, D. Kim, J. Gao, and L. Lin, “Employment of frame accumulation and shaped function for upgrading low-light-level image detection sensitivity,” Opt. Lett. A37, 1361–1363 (2012).
[CrossRef]

G. Li, M. Zhou, F. He, and L. Lin, “A novel algorithm combining oversampling and digital lock-in amplifier of high speed and precision,” Rev. Sci. Instrum. A82, 095106 (2011).
[CrossRef]

G. Li, H. Y. Tang, and L. Lin, “Employment of oversampling and shaped function for improving detection sensitivity,” J. Tianjin Univ. 43, 901–905 (2010).

G. Li, L. J. Zhang, and L. Lin, “Weak signal detection based on over-sampling and saw-tooth shaped function,” Acta Electronica Sinica 36, 756–759 (2008).

Lin, L.

G. Li, H. Tang, D. Kim, J. Gao, and L. Lin, “Employment of frame accumulation and shaped function for upgrading low-light-level image detection sensitivity,” Opt. Lett. A37, 1361–1363 (2012).
[CrossRef]

G. Li, M. Zhou, F. He, and L. Lin, “A novel algorithm combining oversampling and digital lock-in amplifier of high speed and precision,” Rev. Sci. Instrum. A82, 095106 (2011).
[CrossRef]

G. Li, H. Y. Tang, and L. Lin, “Employment of oversampling and shaped function for improving detection sensitivity,” J. Tianjin Univ. 43, 901–905 (2010).

G. Li, L. J. Zhang, and L. Lin, “Weak signal detection based on over-sampling and saw-tooth shaped function,” Acta Electronica Sinica 36, 756–759 (2008).

Liu, L. W. C.

N. Faramarzpour, M. Jarmal Deen, S. Shirani, Q. Fang, L. W. C. Liu, F. de Souza Campos, and J. W. Swart, “CMOS-based active pixel for low-light-level detection: analysis and measurements,” IEEE Trans. Electron Dev. A54, 3229–3237 (2007).
[CrossRef]

Maik, V.

S. Lee, V. Maik, J. Jang, J. Shin, and J. Paik, “Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images,” IEEE Trans. Consum. Electron. A51, 648–653 (2005).

Marcu, L.

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

Meier, J.

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

Meyrueis, P.

S. Dhokkar, B. Serio, P. Lagonotte, and P. Meyrueis, “Power transistor near-infrared microthermography using an intensified CCD camera and frame integration,” Meas. Sci. Technol. A18, 2696–2703 (2007).
[CrossRef]

Nelson, N.

P. Wu, N. Nelson, and Y. Tseng, “A general method for improving spatial resolution by optimization of electron multiplication in CCD imaging,” Opt. Express A18, 5199–5212 (2010).
[CrossRef]

Paik, J.

S. Lee, V. Maik, J. Jang, J. Shin, and J. Paik, “Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images,” IEEE Trans. Consum. Electron. A51, 648–653 (2005).

Phipps, J.

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

Poirier, B.

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

Riccardi, A.

Sawan, M.

E. Kamrani, M. Hammady, F. Lesage, and M. Sawan, “Modeling and characterizing optical CMOS sensors for biomedical low-intensity light detection,” in Proceedings of the 29th Southern Biomedical Engineering Conference (IEEE, 2013), pp. 83–84.

Serio, B.

S. Dhokkar, B. Serio, P. Lagonotte, and P. Meyrueis, “Power transistor near-infrared microthermography using an intensified CCD camera and frame integration,” Meas. Sci. Technol. A18, 2696–2703 (2007).
[CrossRef]

Shin, J.

S. Lee, V. Maik, J. Jang, J. Shin, and J. Paik, “Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images,” IEEE Trans. Consum. Electron. A51, 648–653 (2005).

Shirani, S.

N. Faramarzpour, M. Jarmal Deen, S. Shirani, Q. Fang, L. W. C. Liu, F. de Souza Campos, and J. W. Swart, “CMOS-based active pixel for low-light-level detection: analysis and measurements,” IEEE Trans. Electron Dev. A54, 3229–3237 (2007).
[CrossRef]

Stoy, H.

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

Sun, F. R.

S. H. Yang, M. Guo, B. K. Li, J. T. Xia, Q. S. Wang, and F. R. Sun, “Design of high resolution high sensitivity EMCCD camera,” in Proceedings of the International Conference on Intelligent System Design and Engineering Application (IEEE, 2012), pp. 1212–1216.

Sun, Y. H.

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

Swart, J. W.

N. Faramarzpour, M. Jarmal Deen, S. Shirani, Q. Fang, L. W. C. Liu, F. de Souza Campos, and J. W. Swart, “CMOS-based active pixel for low-light-level detection: analysis and measurements,” IEEE Trans. Electron Dev. A54, 3229–3237 (2007).
[CrossRef]

Tang, H.

G. Li, H. Tang, D. Kim, J. Gao, and L. Lin, “Employment of frame accumulation and shaped function for upgrading low-light-level image detection sensitivity,” Opt. Lett. A37, 1361–1363 (2012).
[CrossRef]

Tang, H. Y.

G. Li, H. Y. Tang, and L. Lin, “Employment of oversampling and shaped function for improving detection sensitivity,” J. Tianjin Univ. 43, 901–905 (2010).

Tinling, S.

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

Tseng, Y.

P. Wu, N. Nelson, and Y. Tseng, “A general method for improving spatial resolution by optimization of electron multiplication in CCD imaging,” Opt. Express A18, 5199–5212 (2010).
[CrossRef]

Wang, Q. S.

S. H. Yang, M. Guo, B. K. Li, J. T. Xia, Q. S. Wang, and F. R. Sun, “Design of high resolution high sensitivity EMCCD camera,” in Proceedings of the International Conference on Intelligent System Design and Engineering Application (IEEE, 2012), pp. 1212–1216.

Wu, P.

P. Wu, N. Nelson, and Y. Tseng, “A general method for improving spatial resolution by optimization of electron multiplication in CCD imaging,” Opt. Express A18, 5199–5212 (2010).
[CrossRef]

Xia, J. T.

S. H. Yang, M. Guo, B. K. Li, J. T. Xia, Q. S. Wang, and F. R. Sun, “Design of high resolution high sensitivity EMCCD camera,” in Proceedings of the International Conference on Intelligent System Design and Engineering Application (IEEE, 2012), pp. 1212–1216.

Xu, X. G.

Z. P. Jiang, X. G. Xu, and X. C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. A39, 2982–2987 (2000).
[CrossRef]

Yang, S. H.

S. H. Yang, M. Guo, B. K. Li, J. T. Xia, Q. S. Wang, and F. R. Sun, “Design of high resolution high sensitivity EMCCD camera,” in Proceedings of the International Conference on Intelligent System Design and Engineering Application (IEEE, 2012), pp. 1212–1216.

Zhang, L. J.

G. Li, L. J. Zhang, and L. Lin, “Weak signal detection based on over-sampling and saw-tooth shaped function,” Acta Electronica Sinica 36, 756–759 (2008).

Zhang, X. C.

Z. P. Jiang, X. G. Xu, and X. C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. A39, 2982–2987 (2000).
[CrossRef]

Zhou, M.

G. Li, M. Zhou, F. He, and L. Lin, “A novel algorithm combining oversampling and digital lock-in amplifier of high speed and precision,” Rev. Sci. Instrum. A82, 095106 (2011).
[CrossRef]

Acta Electronica Sinica

G. Li, L. J. Zhang, and L. Lin, “Weak signal detection based on over-sampling and saw-tooth shaped function,” Acta Electronica Sinica 36, 756–759 (2008).

Appl. Opt.

Z. P. Jiang, X. G. Xu, and X. C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. A39, 2982–2987 (2000).
[CrossRef]

M. Carbillet and A. Riccardi, “Low-light-level charge-coupled devices for pyramid wavefront sensing on 8 m class telescopes: what actual gain?” Appl. Opt. 49, G167–G173 (2010).
[CrossRef]

IEEE Trans. Consum. Electron.

S. Lee, V. Maik, J. Jang, J. Shin, and J. Paik, “Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images,” IEEE Trans. Consum. Electron. A51, 648–653 (2005).

IEEE Trans. Electron Dev.

N. Faramarzpour, M. Jarmal Deen, S. Shirani, Q. Fang, L. W. C. Liu, F. de Souza Campos, and J. W. Swart, “CMOS-based active pixel for low-light-level detection: analysis and measurements,” IEEE Trans. Electron Dev. A54, 3229–3237 (2007).
[CrossRef]

J. Tianjin Univ.

G. Li, H. Y. Tang, and L. Lin, “Employment of oversampling and shaped function for improving detection sensitivity,” J. Tianjin Univ. 43, 901–905 (2010).

Meas. Sci. Technol.

S. Dhokkar, B. Serio, P. Lagonotte, and P. Meyrueis, “Power transistor near-infrared microthermography using an intensified CCD camera and frame integration,” Meas. Sci. Technol. A18, 2696–2703 (2007).
[CrossRef]

Opt. Express

P. Wu, N. Nelson, and Y. Tseng, “A general method for improving spatial resolution by optimization of electron multiplication in CCD imaging,” Opt. Express A18, 5199–5212 (2010).
[CrossRef]

Opt. Lett.

Y. H. Sun, J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu, “Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma,” Opt. Lett. A34, 2081–2083 (2009).
[CrossRef]

G. Li, H. Tang, D. Kim, J. Gao, and L. Lin, “Employment of frame accumulation and shaped function for upgrading low-light-level image detection sensitivity,” Opt. Lett. A37, 1361–1363 (2012).
[CrossRef]

Rev. Sci. Instrum.

G. Li, M. Zhou, F. He, and L. Lin, “A novel algorithm combining oversampling and digital lock-in amplifier of high speed and precision,” Rev. Sci. Instrum. A82, 095106 (2011).
[CrossRef]

Other

C. Trinh, “Low light signal detection and intrinsic noise sources,” Physics 111 Library, 2006, http://ugastro.berkeley.edu/~ctrinh/papers/lls.pdf .

E. Kamrani, M. Hammady, F. Lesage, and M. Sawan, “Modeling and characterizing optical CMOS sensors for biomedical low-intensity light detection,” in Proceedings of the 29th Southern Biomedical Engineering Conference (IEEE, 2013), pp. 83–84.

S. H. Yang, M. Guo, B. K. Li, J. T. Xia, Q. S. Wang, and F. R. Sun, “Design of high resolution high sensitivity EMCCD camera,” in Proceedings of the International Conference on Intelligent System Design and Engineering Application (IEEE, 2012), pp. 1212–1216.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Simplified model of the camera optical system.

Fig. 2.
Fig. 2.

Distribution of the deviation lines and fitting line.

Fig. 3.
Fig. 3.

Configuration of the LLL detection system.

Fig. 4.
Fig. 4.

Experiment results. (a) A clear image in the normal light environment. (b) One of the frames captured by dimming the brightness of LED1 so that the CCD camera cannot detect the image. The 256-level gray scale stretch algorithm is then used to make sure that the image sensor cannot detect the LLL image signal absolutely. (c) A final image that is acquired by using the frame accumulation algorithm and the 256-level gray scale stretch to process the 256 frames which contain. (d) One of the frames that results after applying the sawtooth-shaped-function signal with the LLL image signal. (e) The acquired image by dealing with the 256 captured images that contain the sawtooth-shaped-function signal with the proposed method and the 256-level gray scale stretch. (f) The acquired image by dealing with the 256 captured images that contain the sawtooth-shaped-function signal with the proposed method and the mixed algorithm. (g) The acquired image by using the previous method in [12].

Tables (1)

Tables Icon

Table 1. Comparison between the Improved Method and the Previous Method by Using the Objective Evaluation Criteriaa

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

x=xs+xf=xs+ai,i=0,1,2,,m1.
d=i=0m1(xxi)2=i=0m1(xs+aixi)2.
dxs=2i=0m1(xs+aixi)=0,
da=2i=0m1i(xs+aixi)=0.
mx^s+a^i=0m1i=i=0m1xi,
x^si=0m1i+a^i=0m1i2=i=0m1ixi.
x^s=φ1φ2φ0φ3mφ2φ02,
a^=mφ3φ0φ1mφ2φ02.
S=1m2i=0m1(x^s+a^ixi)2,
Sxi=i=0m1(x^sxiS)2,
Sa=i=0m1(a^xiS)2.
Sxi=Si=0m1i2m(i=0m1i2)(i=0m1i)2,
Sa=Smm(i=0m1i2)(i=0m1i)2.

Metrics