Abstract

As a newly developed ultrasmooth polishing technique, fluid jet polishing (FJP) has been widely used for optical glass polishing. The size of the particle in the polishing slurry has a great influence on the material removal rate and quality of the processed surface. The material removal mode affected by the particle size is investigated in detail. Particle trajectories with different size are calculated by numerical simulations in the FJP process. Simulation results demonstrate that the particle with large size will seriously deviate from the fluid streamline and almost impact on the workpiece along a straight line in the initial incident direction. The larger is the particle size, the more deviation will occur. Impact models are established based on different particle trajectories. A polishing experiment was conducted to verify the feasibility of the mode. Experiment results show that the particle size has a great influence on the material removal mode in FJP with the same process parameters. Material is removed in the plastic mode with higher removal rate and worse surface roughness for a larger-sized particle, while the material removal occurring in the elastic mode has a much lower removal rate and smoother surface for the smaller-sized particle. Material is removed by chemical impact reaction between the particle and the surface within the elastic mode, and a smooth surface with no damage is obtained after the FJP process.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
    [CrossRef]
  2. T. Miura, K. Murakami, H. Kawai, Y. Kohama, K. Morita, K. Hada, and Y. Ohkubo, “Nikon EUVL development progress update,” Proc. SPIE 7636, 76361G (2010).
    [CrossRef]
  3. F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
    [CrossRef]
  4. J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
    [CrossRef]
  5. O. W. Fahnle, H. V. Brug, and H. J. Frankena, “Fluid jet polishing of optical surfaces,” Appl. Opt. 37, 6771–6773 (1998).
    [CrossRef]
  6. H. Fang, P. J. Guo, and J. C. Yu, “Surface roughness and material removal in fluid jet polishing,” Appl. Opt. 45, 4012–4019 (2006).
    [CrossRef]
  7. Z. F. Zhang, W. L. Liu, and Z. T. Song, “Particle size and surfactant effects on chemical mechanical polishing of glass using silica-based slurry,” Appl. Opt. 49, 5480–5485 (2010).
    [CrossRef]
  8. W. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
    [CrossRef]
  9. Z. Z. Li, S. Y. Li, Y. F. Dai, and X. Q. Peng, “Optimization and application of influence function in abrasive jet polishing,” Appl. Opt. 49, 2947–2953 (2010).
    [CrossRef]
  10. Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
    [CrossRef]
  11. X. F. Xu, J. B. Luo, and D. Guo, “Nanoparticle-wall collision in a laminar cylindrical liquid jet,” J. Colloid Interface Sci. 359, 334–338 (2011).
    [CrossRef]
  12. S. M. Booij, “Fluid jet polishing-possibilities and limitations of a new fabrication technique,” Ph.D. thesis (Delft University, 2003).
  13. W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
    [CrossRef]
  14. X. Z. Song, Y. Zhang, and F. H. Zhang, “Study on removal mechanism of nanoparticle colloid jet machining,” Adv. Mater. Res. 53–54, 363–368 (2008).
    [CrossRef]
  15. K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (Elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
    [CrossRef]
  16. L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
    [CrossRef]
  17. T. Hoshino, Y. Kurata, Y. Terasaki, and K. Susa, “Mechanism of polishing of SiO2 films by CeO2 particles,” J. Non-Cryst. Solids 283, 129–136 (2001).
    [CrossRef]
  18. W. Q. Peng, C. L. Guan, and S. Y. Li, “Ultrasmooth surface polishing based on the hydrodynamic effect,” Appl. Opt. 52, 6411–6416 (2013).
    [CrossRef]
  19. P. J. Guo, H. Fang, and J. C. Yu, “Computer-controlled fluid jet polishing,” Proc. SPIE 6722, 672210 (2007).
    [CrossRef]
  20. F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
    [CrossRef]
  21. K. Yamauchi, H. Mimura, K. Inagaki, and Y. Mori, “Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining,” Rev. Sci. Instrum. 73, 4028–4033 (2002).
    [CrossRef]

2013 (2)

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

W. Q. Peng, C. L. Guan, and S. Y. Li, “Ultrasmooth surface polishing based on the hydrodynamic effect,” Appl. Opt. 52, 6411–6416 (2013).
[CrossRef]

2011 (1)

X. F. Xu, J. B. Luo, and D. Guo, “Nanoparticle-wall collision in a laminar cylindrical liquid jet,” J. Colloid Interface Sci. 359, 334–338 (2011).
[CrossRef]

2010 (3)

2009 (1)

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

2008 (1)

X. Z. Song, Y. Zhang, and F. H. Zhang, “Study on removal mechanism of nanoparticle colloid jet machining,” Adv. Mater. Res. 53–54, 363–368 (2008).
[CrossRef]

2007 (1)

P. J. Guo, H. Fang, and J. C. Yu, “Computer-controlled fluid jet polishing,” Proc. SPIE 6722, 672210 (2007).
[CrossRef]

2006 (1)

2004 (3)

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

W. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

2002 (1)

K. Yamauchi, H. Mimura, K. Inagaki, and Y. Mori, “Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining,” Rev. Sci. Instrum. 73, 4028–4033 (2002).
[CrossRef]

2001 (2)

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

T. Hoshino, Y. Kurata, Y. Terasaki, and K. Susa, “Mechanism of polishing of SiO2 films by CeO2 particles,” J. Non-Cryst. Solids 283, 129–136 (2001).
[CrossRef]

2000 (1)

Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
[CrossRef]

1999 (1)

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (Elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

1998 (1)

1990 (1)

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
[CrossRef]

Abiade, J.

W. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

Booij, S. M.

S. M. Booij, “Fluid jet polishing-possibilities and limitations of a new fabrication technique,” Ph.D. thesis (Delft University, 2003).

Borden, M. R.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Brug, H. V.

Burkart, S.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Bustaus, C.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Campbell, J. H.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Chang, L.

Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
[CrossRef]

Chase, L. L.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

Choi, W.

W. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

Cook, L. M.

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
[CrossRef]

Dai, Y. F.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

Z. Z. Li, S. Y. Li, Y. F. Dai, and X. Q. Peng, “Optimization and application of influence function in abrasive jet polishing,” Appl. Opt. 49, 2947–2953 (2010).
[CrossRef]

Dinger, U.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Eisert, F.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Fahnle, O. W.

Fang, H.

P. J. Guo, H. Fang, and J. C. Yu, “Computer-controlled fluid jet polishing,” Proc. SPIE 6722, 672210 (2007).
[CrossRef]

H. Fang, P. J. Guo, and J. C. Yu, “Surface roughness and material removal in fluid jet polishing,” Appl. Opt. 45, 4012–4019 (2006).
[CrossRef]

Feit, M.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Fellner, B.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Frankena, H. J.

Genin, F. Y.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

Goto, H.

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (Elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Guan, C. L.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

W. Q. Peng, C. L. Guan, and S. Y. Li, “Ultrasmooth surface polishing based on the hydrodynamic effect,” Appl. Opt. 52, 6411–6416 (2013).
[CrossRef]

Guo, D.

X. F. Xu, J. B. Luo, and D. Guo, “Nanoparticle-wall collision in a laminar cylindrical liquid jet,” J. Colloid Interface Sci. 359, 334–338 (2011).
[CrossRef]

Guo, P. J.

P. J. Guo, H. Fang, and J. C. Yu, “Computer-controlled fluid jet polishing,” Proc. SPIE 6722, 672210 (2007).
[CrossRef]

H. Fang, P. J. Guo, and J. C. Yu, “Surface roughness and material removal in fluid jet polishing,” Appl. Opt. 45, 4012–4019 (2006).
[CrossRef]

Hackel, R.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Hada, K.

T. Miura, K. Murakami, H. Kawai, Y. Kohama, K. Morita, K. Hada, and Y. Ohkubo, “Nikon EUVL development progress update,” Proc. SPIE 7636, 76361G (2010).
[CrossRef]

Hawley-Fedder, R.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Hirose, K.

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (Elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Hocky, O.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Hofer, H.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Hoshino, T.

T. Hoshino, Y. Kurata, Y. Terasaki, and K. Susa, “Mechanism of polishing of SiO2 films by CeO2 particles,” J. Non-Cryst. Solids 283, 129–136 (2001).
[CrossRef]

Inagaki, K.

K. Yamauchi, H. Mimura, K. Inagaki, and Y. Mori, “Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining,” Rev. Sci. Instrum. 73, 4028–4033 (2002).
[CrossRef]

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (Elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Kawai, H.

T. Miura, K. Murakami, H. Kawai, Y. Kohama, K. Morita, K. Hada, and Y. Ohkubo, “Nikon EUVL development progress update,” Proc. SPIE 7636, 76361G (2010).
[CrossRef]

Kohama, Y.

T. Miura, K. Murakami, H. Kawai, Y. Kohama, K. Morita, K. Hada, and Y. Ohkubo, “Nikon EUVL development progress update,” Proc. SPIE 7636, 76361G (2010).
[CrossRef]

Kurata, Y.

T. Hoshino, Y. Kurata, Y. Terasaki, and K. Susa, “Mechanism of polishing of SiO2 films by CeO2 particles,” J. Non-Cryst. Solids 283, 129–136 (2001).
[CrossRef]

Kurz, P.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Lee, S. M.

W. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

Li, S. Y.

Li, Z. Z.

Liu, W. L.

Luan, D. R.

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

Luo, J. B.

X. F. Xu, J. B. Luo, and D. Guo, “Nanoparticle-wall collision in a laminar cylindrical liquid jet,” J. Colloid Interface Sci. 359, 334–338 (2011).
[CrossRef]

Maietta, D. M.

Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
[CrossRef]

Mayer, M.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Menapace, J. A.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Mimura, H.

K. Yamauchi, H. Mimura, K. Inagaki, and Y. Mori, “Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining,” Rev. Sci. Instrum. 73, 4028–4033 (2002).
[CrossRef]

Miura, T.

T. Miura, K. Murakami, H. Kawai, Y. Kohama, K. Morita, K. Hada, and Y. Ohkubo, “Nikon EUVL development progress update,” Proc. SPIE 7636, 76361G (2010).
[CrossRef]

Mori, Y.

K. Yamauchi, H. Mimura, K. Inagaki, and Y. Mori, “Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining,” Rev. Sci. Instrum. 73, 4028–4033 (2002).
[CrossRef]

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (Elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Morita, K.

T. Miura, K. Murakami, H. Kawai, Y. Kohama, K. Morita, K. Hada, and Y. Ohkubo, “Nikon EUVL development progress update,” Proc. SPIE 7636, 76361G (2010).
[CrossRef]

Munster, C.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Murakami, K.

T. Miura, K. Murakami, H. Kawai, Y. Kohama, K. Morita, K. Hada, and Y. Ohkubo, “Nikon EUVL development progress update,” Proc. SPIE 7636, 76361G (2010).
[CrossRef]

Ohkubo, Y.

T. Miura, K. Murakami, H. Kawai, Y. Kohama, K. Morita, K. Hada, and Y. Ohkubo, “Nikon EUVL development progress update,” Proc. SPIE 7636, 76361G (2010).
[CrossRef]

Peng, W. Q.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

W. Q. Peng, C. L. Guan, and S. Y. Li, “Ultrasmooth surface polishing based on the hydrodynamic effect,” Appl. Opt. 52, 6411–6416 (2013).
[CrossRef]

Peng, X. Q.

Pistor, T. V.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

Riedelsheimer, K.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Riley, M.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Runkel, M.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Rupp, M.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Salleo, A.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

Sano, Y.

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (Elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Schulte, S.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Seitz, G.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Shen, X. M.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

Singh, R. K.

W. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

Song, X. Z.

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

X. Z. Song, Y. Zhang, and F. H. Zhang, “Study on removal mechanism of nanoparticle colloid jet machining,” Adv. Mater. Res. 53–54, 363–368 (2008).
[CrossRef]

Song, Z. T.

Stacklies, S.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Stolz, C. J.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Sugiyama, K.

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (Elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Susa, K.

T. Hoshino, Y. Kurata, Y. Terasaki, and K. Susa, “Mechanism of polishing of SiO2 films by CeO2 particles,” J. Non-Cryst. Solids 283, 129–136 (2001).
[CrossRef]

Terasaki, Y.

T. Hoshino, Y. Kurata, Y. Terasaki, and K. Susa, “Mechanism of polishing of SiO2 films by CeO2 particles,” J. Non-Cryst. Solids 283, 129–136 (2001).
[CrossRef]

Wang, Z.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

Whitman, P.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Xu, X. F.

X. F. Xu, J. B. Luo, and D. Guo, “Nanoparticle-wall collision in a laminar cylindrical liquid jet,” J. Colloid Interface Sci. 359, 334–338 (2011).
[CrossRef]

Yamamura, K.

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (Elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Yamauchi, K.

K. Yamauchi, H. Mimura, K. Inagaki, and Y. Mori, “Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining,” Rev. Sci. Instrum. 73, 4028–4033 (2002).
[CrossRef]

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (Elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Yu, J.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Yu, J. C.

P. J. Guo, H. Fang, and J. C. Yu, “Computer-controlled fluid jet polishing,” Proc. SPIE 6722, 672210 (2007).
[CrossRef]

H. Fang, P. J. Guo, and J. C. Yu, “Surface roughness and material removal in fluid jet polishing,” Appl. Opt. 45, 4012–4019 (2006).
[CrossRef]

Zhang, F. H.

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

X. Z. Song, Y. Zhang, and F. H. Zhang, “Study on removal mechanism of nanoparticle colloid jet machining,” Adv. Mater. Res. 53–54, 363–368 (2008).
[CrossRef]

Zhang, Y.

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

X. Z. Song, Y. Zhang, and F. H. Zhang, “Study on removal mechanism of nanoparticle colloid jet machining,” Adv. Mater. Res. 53–54, 363–368 (2008).
[CrossRef]

Zhang, Z. F.

Zhao, Y. W.

Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
[CrossRef]

Adv. Mater. Res. (1)

X. Z. Song, Y. Zhang, and F. H. Zhang, “Study on removal mechanism of nanoparticle colloid jet machining,” Adv. Mater. Res. 53–54, 363–368 (2008).
[CrossRef]

Appl. Opt. (5)

Comput. Mater. Sci. (1)

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (Elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

J. Colloid Interface Sci. (1)

X. F. Xu, J. B. Luo, and D. Guo, “Nanoparticle-wall collision in a laminar cylindrical liquid jet,” J. Colloid Interface Sci. 359, 334–338 (2011).
[CrossRef]

J. Electrochem. Soc. (1)

W. Choi, J. Abiade, S. M. Lee, and R. K. Singh, “Effects of slurry particles on silicon dioxide CMP,” J. Electrochem. Soc. 151, G512–G522 (2004).
[CrossRef]

J. Micromech. Microeng. (1)

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

J. Non-Cryst. Solids (2)

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
[CrossRef]

T. Hoshino, Y. Kurata, Y. Terasaki, and K. Susa, “Mechanism of polishing of SiO2 films by CeO2 particles,” J. Non-Cryst. Solids 283, 129–136 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. 18, 2607–2616 (2001).
[CrossRef]

J. Tribol. (1)

Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
[CrossRef]

Opt. Eng. (1)

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

Proc. SPIE (4)

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

T. Miura, K. Murakami, H. Kawai, Y. Kohama, K. Morita, K. Hada, and Y. Ohkubo, “Nikon EUVL development progress update,” Proc. SPIE 7636, 76361G (2010).
[CrossRef]

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF optical materials and fabrication technologies: an overview,” Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

P. J. Guo, H. Fang, and J. C. Yu, “Computer-controlled fluid jet polishing,” Proc. SPIE 6722, 672210 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

K. Yamauchi, H. Mimura, K. Inagaki, and Y. Mori, “Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining,” Rev. Sci. Instrum. 73, 4028–4033 (2002).
[CrossRef]

Other (1)

S. M. Booij, “Fluid jet polishing-possibilities and limitations of a new fabrication technique,” Ph.D. thesis (Delft University, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Mechanical contact model between the single particle and workpiece surface.

Fig. 2.
Fig. 2.

Trajectories of the particle with different sizes: (a) vertical jet polishing and (b) oblique jet polishing.

Fig. 3.
Fig. 3.

Particle impact model: (a) different sizes, (b) large size, and (c) small size.

Fig. 4.
Fig. 4.

Particle size distributions in polishing slurries: (a) 3 μm and (b) 100 nm.

Fig. 5.
Fig. 5.

Sample surface measured by AFM: (a) before polishing, (b) polished by the particle with size of 3 μm, and (c) polished by the particle with size of 100 nm.

Fig. 6.
Fig. 6.

Material removal rates of the particle with different sizes.

Tables (2)

Tables Icon

Table 1. Process Parameters in FJP

Tables Icon

Table 2. Critical Contact and Impact Forces of the Particle with Different Sizes

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Fne=916(REw)2(πkHw)3,
Fnp=92(REw)2(πHw)3.
dupdt=Fd+Fm+g(ρpρs)ρp,
Fd=18μρpdp2CDRe24(uup),
Fm=12ρsρpddt(uup).
Re=ρsdp|upu|μ.
dSdt=up.
Fcedp3,Frrdp.
Fnl=mpvnΔt,
Δt=ρsdp218ρpμ.
Fns=16πdp3(ρpρs)V02Rc.
Rc=Rj/cosθ.

Metrics