Abstract

A multitarget tracking system based on an infrared (IR) fish-eye lens is built to satisfy urgent requirements of large-field IR, multitarget, real-time reconnaissance and tracking. Utilizing an IR fish-eye lens and a 512×512 pixel PtSi detector, the system can detect threatening targets at the whole space domain and the whole time domain. The hardware of the system based on a dual-digital signal processor is designed to implement data processing for multitarget tracking algorithms, which include a track initiation algorithm and a modified generalized probability data association algorithm. We also carried out a tracking experiment for two aerial maneuvering targets. Comparing the theoretical and experimental tracks, the availability of the system and the real-time capability of multitarget tracking are validated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Hintz, J. Allen, M. Chen, T. Price, and G. Goetz, “UAV Infrared Search and Track (IRST)/Eyesafe Laser Range Finder (ELR) System,” (2005).
  2. B. Ristic, M. Hernandez, A. Farina, and H.-T. Ong, “Analysis of radar allocation requirements for an IRST aided tracking of anti-ship missiles,” (2006).
  3. L. N. Smith and J. R. Waterman, “Real-time fleet protection,” (2007).
  4. P.-O. Nouguès, P. Baize, and F. Roland, “Third-generation naval IRST using the step-and-stare architecture,” Proc. SPIE 6940, 69401B (2008).
  5. E. H. Takken and J. R. Waterman, “Navy DAS Program for SBIRST,” Proc. SPIE 5406, 295–304 (2004).
    [CrossRef]
  6. D. Manson, M. Richards, T. Nicolson, T. Khan, D. Barron, and G. Evans, “Staring naval infrared search and track demonstrator,” Proc. SPIE 5987, 598706 (2005).
    [CrossRef]
  7. J.-C. Fontanella, D. Delacourt, and Y. Klein, “ARTEMIS: first naval staring IRST in service,” Proc. SPIE 7660, 766006 (2010).
  8. J. Fujiki, “Calibration of radially symmetric distortion based on linearity in the calibrated image,” in IEEE International Conference on Computer Vision Workshops, Barcelona, 2011, pp. 288–295.
  9. M. Saito, K. Kitaguchi, and G. Kimura, “People detection and tracking from fish-eye image based on probabilistic appearance model,” in SICE Annual Conference (2011), pp. 435–440.
  10. Y. Pan and H. Cheng, “Hyper-field of view monitoring optical system,” in ICEMI (2011), pp. 107–109.
  11. B. Zhou, L. Sun, and J. Ying, “Special problems of target detection in super wide angle staring system,” Laser Infrared 38, 334–337 (2008).
  12. X. Bai and F. Zhou, “Hit-or-miss transform based infrared dim small target enhancement,” Opt. Laser Technol. 43, 1084–1090 (2011).
    [CrossRef]
  13. H. Deng and J. Liu, “Infrared small target detection based on the self-information map,” Infrared Phys. Technol. 54, 100–107 (2011).
    [CrossRef]
  14. K. Huang and X. Mao, “Detectability of infrared small targets,” Infrared Phys. Technol. 53, 208–217 (2010).
    [CrossRef]
  15. B. Xu, H. Xu, J. Zhu, and Q. Chen, “Ants with three primary colors for track initiation,” Exp. Syst. Appl. 38, 9809–9820 (2011).
  16. Y. Bar-Shalom and T. E. Fortman, Tracking and Data Association (Academic, 1988).
  17. B. Zhou and N. T. Bose, “An efficient algorithm for data association in multitarget tracking,” IEEE Trans. Aerosp. Electron. Syst. 31, 458–468 (1995).
  18. E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: a survey,” IEEE Trans. Aerosp. Electron. Syst. 34, 103–123 (1998).
  19. Q. Pan, X. Ye, F. Yang, and H. Zhang, “Generalized probability data association algorithm,” Acta Electron. Sin. 33, 467–472 (2005).
  20. Y. Wang, “Some key problems about the design of IR thermal imaging fish-eye lens,” Acta Photon. Sin. 24, 1078–1080 (2005).
  21. T. Lu, X. Su, L. Yang, J. Liang, and Y. Dong, “Multi-targets attitude recognize based on Hough and improved radon transform,” Acta Photon. Sin. 38, 2722–2727 (2009).
  22. J. Chen, H. Leung, T. Lo, J. Litva, and M. Blanchette, “A modified probabilistic data association filter in a real clutter environment,” IEEE Trans. Aerosp. Electron. Syst. 32, 300–313 (1996).
  23. C. Li, C. Han, and H. Zhu, “Modified generalized probability data association algorithm,” Opt. Electron. Eng. 33, 13–17 (2006).

2011 (3)

X. Bai and F. Zhou, “Hit-or-miss transform based infrared dim small target enhancement,” Opt. Laser Technol. 43, 1084–1090 (2011).
[CrossRef]

H. Deng and J. Liu, “Infrared small target detection based on the self-information map,” Infrared Phys. Technol. 54, 100–107 (2011).
[CrossRef]

B. Xu, H. Xu, J. Zhu, and Q. Chen, “Ants with three primary colors for track initiation,” Exp. Syst. Appl. 38, 9809–9820 (2011).

2010 (2)

K. Huang and X. Mao, “Detectability of infrared small targets,” Infrared Phys. Technol. 53, 208–217 (2010).
[CrossRef]

J.-C. Fontanella, D. Delacourt, and Y. Klein, “ARTEMIS: first naval staring IRST in service,” Proc. SPIE 7660, 766006 (2010).

2009 (1)

T. Lu, X. Su, L. Yang, J. Liang, and Y. Dong, “Multi-targets attitude recognize based on Hough and improved radon transform,” Acta Photon. Sin. 38, 2722–2727 (2009).

2008 (2)

B. Zhou, L. Sun, and J. Ying, “Special problems of target detection in super wide angle staring system,” Laser Infrared 38, 334–337 (2008).

P.-O. Nouguès, P. Baize, and F. Roland, “Third-generation naval IRST using the step-and-stare architecture,” Proc. SPIE 6940, 69401B (2008).

2006 (1)

C. Li, C. Han, and H. Zhu, “Modified generalized probability data association algorithm,” Opt. Electron. Eng. 33, 13–17 (2006).

2005 (3)

D. Manson, M. Richards, T. Nicolson, T. Khan, D. Barron, and G. Evans, “Staring naval infrared search and track demonstrator,” Proc. SPIE 5987, 598706 (2005).
[CrossRef]

Q. Pan, X. Ye, F. Yang, and H. Zhang, “Generalized probability data association algorithm,” Acta Electron. Sin. 33, 467–472 (2005).

Y. Wang, “Some key problems about the design of IR thermal imaging fish-eye lens,” Acta Photon. Sin. 24, 1078–1080 (2005).

2004 (1)

E. H. Takken and J. R. Waterman, “Navy DAS Program for SBIRST,” Proc. SPIE 5406, 295–304 (2004).
[CrossRef]

1998 (1)

E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: a survey,” IEEE Trans. Aerosp. Electron. Syst. 34, 103–123 (1998).

1996 (1)

J. Chen, H. Leung, T. Lo, J. Litva, and M. Blanchette, “A modified probabilistic data association filter in a real clutter environment,” IEEE Trans. Aerosp. Electron. Syst. 32, 300–313 (1996).

1995 (1)

B. Zhou and N. T. Bose, “An efficient algorithm for data association in multitarget tracking,” IEEE Trans. Aerosp. Electron. Syst. 31, 458–468 (1995).

Allen, J.

R. T. Hintz, J. Allen, M. Chen, T. Price, and G. Goetz, “UAV Infrared Search and Track (IRST)/Eyesafe Laser Range Finder (ELR) System,” (2005).

Averbuch, A.

E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: a survey,” IEEE Trans. Aerosp. Electron. Syst. 34, 103–123 (1998).

Bai, X.

X. Bai and F. Zhou, “Hit-or-miss transform based infrared dim small target enhancement,” Opt. Laser Technol. 43, 1084–1090 (2011).
[CrossRef]

Baize, P.

P.-O. Nouguès, P. Baize, and F. Roland, “Third-generation naval IRST using the step-and-stare architecture,” Proc. SPIE 6940, 69401B (2008).

Barron, D.

D. Manson, M. Richards, T. Nicolson, T. Khan, D. Barron, and G. Evans, “Staring naval infrared search and track demonstrator,” Proc. SPIE 5987, 598706 (2005).
[CrossRef]

Bar-Shalom, Y.

E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: a survey,” IEEE Trans. Aerosp. Electron. Syst. 34, 103–123 (1998).

Y. Bar-Shalom and T. E. Fortman, Tracking and Data Association (Academic, 1988).

Blanchette, M.

J. Chen, H. Leung, T. Lo, J. Litva, and M. Blanchette, “A modified probabilistic data association filter in a real clutter environment,” IEEE Trans. Aerosp. Electron. Syst. 32, 300–313 (1996).

Bose, N. T.

B. Zhou and N. T. Bose, “An efficient algorithm for data association in multitarget tracking,” IEEE Trans. Aerosp. Electron. Syst. 31, 458–468 (1995).

Chen, J.

J. Chen, H. Leung, T. Lo, J. Litva, and M. Blanchette, “A modified probabilistic data association filter in a real clutter environment,” IEEE Trans. Aerosp. Electron. Syst. 32, 300–313 (1996).

Chen, M.

R. T. Hintz, J. Allen, M. Chen, T. Price, and G. Goetz, “UAV Infrared Search and Track (IRST)/Eyesafe Laser Range Finder (ELR) System,” (2005).

Chen, Q.

B. Xu, H. Xu, J. Zhu, and Q. Chen, “Ants with three primary colors for track initiation,” Exp. Syst. Appl. 38, 9809–9820 (2011).

Cheng, H.

Y. Pan and H. Cheng, “Hyper-field of view monitoring optical system,” in ICEMI (2011), pp. 107–109.

Dayan, J.

E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: a survey,” IEEE Trans. Aerosp. Electron. Syst. 34, 103–123 (1998).

Delacourt, D.

J.-C. Fontanella, D. Delacourt, and Y. Klein, “ARTEMIS: first naval staring IRST in service,” Proc. SPIE 7660, 766006 (2010).

Deng, H.

H. Deng and J. Liu, “Infrared small target detection based on the self-information map,” Infrared Phys. Technol. 54, 100–107 (2011).
[CrossRef]

Dong, Y.

T. Lu, X. Su, L. Yang, J. Liang, and Y. Dong, “Multi-targets attitude recognize based on Hough and improved radon transform,” Acta Photon. Sin. 38, 2722–2727 (2009).

Evans, G.

D. Manson, M. Richards, T. Nicolson, T. Khan, D. Barron, and G. Evans, “Staring naval infrared search and track demonstrator,” Proc. SPIE 5987, 598706 (2005).
[CrossRef]

Farina, A.

B. Ristic, M. Hernandez, A. Farina, and H.-T. Ong, “Analysis of radar allocation requirements for an IRST aided tracking of anti-ship missiles,” (2006).

Fontanella, J.-C.

J.-C. Fontanella, D. Delacourt, and Y. Klein, “ARTEMIS: first naval staring IRST in service,” Proc. SPIE 7660, 766006 (2010).

Fortman, T. E.

Y. Bar-Shalom and T. E. Fortman, Tracking and Data Association (Academic, 1988).

Fujiki, J.

J. Fujiki, “Calibration of radially symmetric distortion based on linearity in the calibrated image,” in IEEE International Conference on Computer Vision Workshops, Barcelona, 2011, pp. 288–295.

Goetz, G.

R. T. Hintz, J. Allen, M. Chen, T. Price, and G. Goetz, “UAV Infrared Search and Track (IRST)/Eyesafe Laser Range Finder (ELR) System,” (2005).

Han, C.

C. Li, C. Han, and H. Zhu, “Modified generalized probability data association algorithm,” Opt. Electron. Eng. 33, 13–17 (2006).

Hernandez, M.

B. Ristic, M. Hernandez, A. Farina, and H.-T. Ong, “Analysis of radar allocation requirements for an IRST aided tracking of anti-ship missiles,” (2006).

Hintz, R. T.

R. T. Hintz, J. Allen, M. Chen, T. Price, and G. Goetz, “UAV Infrared Search and Track (IRST)/Eyesafe Laser Range Finder (ELR) System,” (2005).

Huang, K.

K. Huang and X. Mao, “Detectability of infrared small targets,” Infrared Phys. Technol. 53, 208–217 (2010).
[CrossRef]

Khan, T.

D. Manson, M. Richards, T. Nicolson, T. Khan, D. Barron, and G. Evans, “Staring naval infrared search and track demonstrator,” Proc. SPIE 5987, 598706 (2005).
[CrossRef]

Kimura, G.

M. Saito, K. Kitaguchi, and G. Kimura, “People detection and tracking from fish-eye image based on probabilistic appearance model,” in SICE Annual Conference (2011), pp. 435–440.

Kitaguchi, K.

M. Saito, K. Kitaguchi, and G. Kimura, “People detection and tracking from fish-eye image based on probabilistic appearance model,” in SICE Annual Conference (2011), pp. 435–440.

Klein, Y.

J.-C. Fontanella, D. Delacourt, and Y. Klein, “ARTEMIS: first naval staring IRST in service,” Proc. SPIE 7660, 766006 (2010).

Leung, H.

J. Chen, H. Leung, T. Lo, J. Litva, and M. Blanchette, “A modified probabilistic data association filter in a real clutter environment,” IEEE Trans. Aerosp. Electron. Syst. 32, 300–313 (1996).

Li, C.

C. Li, C. Han, and H. Zhu, “Modified generalized probability data association algorithm,” Opt. Electron. Eng. 33, 13–17 (2006).

Liang, J.

T. Lu, X. Su, L. Yang, J. Liang, and Y. Dong, “Multi-targets attitude recognize based on Hough and improved radon transform,” Acta Photon. Sin. 38, 2722–2727 (2009).

Litva, J.

J. Chen, H. Leung, T. Lo, J. Litva, and M. Blanchette, “A modified probabilistic data association filter in a real clutter environment,” IEEE Trans. Aerosp. Electron. Syst. 32, 300–313 (1996).

Liu, J.

H. Deng and J. Liu, “Infrared small target detection based on the self-information map,” Infrared Phys. Technol. 54, 100–107 (2011).
[CrossRef]

Lo, T.

J. Chen, H. Leung, T. Lo, J. Litva, and M. Blanchette, “A modified probabilistic data association filter in a real clutter environment,” IEEE Trans. Aerosp. Electron. Syst. 32, 300–313 (1996).

Lu, T.

T. Lu, X. Su, L. Yang, J. Liang, and Y. Dong, “Multi-targets attitude recognize based on Hough and improved radon transform,” Acta Photon. Sin. 38, 2722–2727 (2009).

Manson, D.

D. Manson, M. Richards, T. Nicolson, T. Khan, D. Barron, and G. Evans, “Staring naval infrared search and track demonstrator,” Proc. SPIE 5987, 598706 (2005).
[CrossRef]

Mao, X.

K. Huang and X. Mao, “Detectability of infrared small targets,” Infrared Phys. Technol. 53, 208–217 (2010).
[CrossRef]

Mazor, E.

E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: a survey,” IEEE Trans. Aerosp. Electron. Syst. 34, 103–123 (1998).

Nicolson, T.

D. Manson, M. Richards, T. Nicolson, T. Khan, D. Barron, and G. Evans, “Staring naval infrared search and track demonstrator,” Proc. SPIE 5987, 598706 (2005).
[CrossRef]

Nouguès, P.-O.

P.-O. Nouguès, P. Baize, and F. Roland, “Third-generation naval IRST using the step-and-stare architecture,” Proc. SPIE 6940, 69401B (2008).

Ong, H.-T.

B. Ristic, M. Hernandez, A. Farina, and H.-T. Ong, “Analysis of radar allocation requirements for an IRST aided tracking of anti-ship missiles,” (2006).

Pan, Q.

Q. Pan, X. Ye, F. Yang, and H. Zhang, “Generalized probability data association algorithm,” Acta Electron. Sin. 33, 467–472 (2005).

Pan, Y.

Y. Pan and H. Cheng, “Hyper-field of view monitoring optical system,” in ICEMI (2011), pp. 107–109.

Price, T.

R. T. Hintz, J. Allen, M. Chen, T. Price, and G. Goetz, “UAV Infrared Search and Track (IRST)/Eyesafe Laser Range Finder (ELR) System,” (2005).

Richards, M.

D. Manson, M. Richards, T. Nicolson, T. Khan, D. Barron, and G. Evans, “Staring naval infrared search and track demonstrator,” Proc. SPIE 5987, 598706 (2005).
[CrossRef]

Ristic, B.

B. Ristic, M. Hernandez, A. Farina, and H.-T. Ong, “Analysis of radar allocation requirements for an IRST aided tracking of anti-ship missiles,” (2006).

Roland, F.

P.-O. Nouguès, P. Baize, and F. Roland, “Third-generation naval IRST using the step-and-stare architecture,” Proc. SPIE 6940, 69401B (2008).

Saito, M.

M. Saito, K. Kitaguchi, and G. Kimura, “People detection and tracking from fish-eye image based on probabilistic appearance model,” in SICE Annual Conference (2011), pp. 435–440.

Smith, L. N.

L. N. Smith and J. R. Waterman, “Real-time fleet protection,” (2007).

Su, X.

T. Lu, X. Su, L. Yang, J. Liang, and Y. Dong, “Multi-targets attitude recognize based on Hough and improved radon transform,” Acta Photon. Sin. 38, 2722–2727 (2009).

Sun, L.

B. Zhou, L. Sun, and J. Ying, “Special problems of target detection in super wide angle staring system,” Laser Infrared 38, 334–337 (2008).

Takken, E. H.

E. H. Takken and J. R. Waterman, “Navy DAS Program for SBIRST,” Proc. SPIE 5406, 295–304 (2004).
[CrossRef]

Wang, Y.

Y. Wang, “Some key problems about the design of IR thermal imaging fish-eye lens,” Acta Photon. Sin. 24, 1078–1080 (2005).

Waterman, J. R.

E. H. Takken and J. R. Waterman, “Navy DAS Program for SBIRST,” Proc. SPIE 5406, 295–304 (2004).
[CrossRef]

L. N. Smith and J. R. Waterman, “Real-time fleet protection,” (2007).

Xu, B.

B. Xu, H. Xu, J. Zhu, and Q. Chen, “Ants with three primary colors for track initiation,” Exp. Syst. Appl. 38, 9809–9820 (2011).

Xu, H.

B. Xu, H. Xu, J. Zhu, and Q. Chen, “Ants with three primary colors for track initiation,” Exp. Syst. Appl. 38, 9809–9820 (2011).

Yang, F.

Q. Pan, X. Ye, F. Yang, and H. Zhang, “Generalized probability data association algorithm,” Acta Electron. Sin. 33, 467–472 (2005).

Yang, L.

T. Lu, X. Su, L. Yang, J. Liang, and Y. Dong, “Multi-targets attitude recognize based on Hough and improved radon transform,” Acta Photon. Sin. 38, 2722–2727 (2009).

Ye, X.

Q. Pan, X. Ye, F. Yang, and H. Zhang, “Generalized probability data association algorithm,” Acta Electron. Sin. 33, 467–472 (2005).

Ying, J.

B. Zhou, L. Sun, and J. Ying, “Special problems of target detection in super wide angle staring system,” Laser Infrared 38, 334–337 (2008).

Zhang, H.

Q. Pan, X. Ye, F. Yang, and H. Zhang, “Generalized probability data association algorithm,” Acta Electron. Sin. 33, 467–472 (2005).

Zhou, B.

B. Zhou, L. Sun, and J. Ying, “Special problems of target detection in super wide angle staring system,” Laser Infrared 38, 334–337 (2008).

B. Zhou and N. T. Bose, “An efficient algorithm for data association in multitarget tracking,” IEEE Trans. Aerosp. Electron. Syst. 31, 458–468 (1995).

Zhou, F.

X. Bai and F. Zhou, “Hit-or-miss transform based infrared dim small target enhancement,” Opt. Laser Technol. 43, 1084–1090 (2011).
[CrossRef]

Zhu, H.

C. Li, C. Han, and H. Zhu, “Modified generalized probability data association algorithm,” Opt. Electron. Eng. 33, 13–17 (2006).

Zhu, J.

B. Xu, H. Xu, J. Zhu, and Q. Chen, “Ants with three primary colors for track initiation,” Exp. Syst. Appl. 38, 9809–9820 (2011).

Acta Electron. Sin. (1)

Q. Pan, X. Ye, F. Yang, and H. Zhang, “Generalized probability data association algorithm,” Acta Electron. Sin. 33, 467–472 (2005).

Acta Photon. Sin. (2)

Y. Wang, “Some key problems about the design of IR thermal imaging fish-eye lens,” Acta Photon. Sin. 24, 1078–1080 (2005).

T. Lu, X. Su, L. Yang, J. Liang, and Y. Dong, “Multi-targets attitude recognize based on Hough and improved radon transform,” Acta Photon. Sin. 38, 2722–2727 (2009).

Exp. Syst. Appl. (1)

B. Xu, H. Xu, J. Zhu, and Q. Chen, “Ants with three primary colors for track initiation,” Exp. Syst. Appl. 38, 9809–9820 (2011).

IEEE Trans. Aerosp. Electron. Syst. (3)

J. Chen, H. Leung, T. Lo, J. Litva, and M. Blanchette, “A modified probabilistic data association filter in a real clutter environment,” IEEE Trans. Aerosp. Electron. Syst. 32, 300–313 (1996).

B. Zhou and N. T. Bose, “An efficient algorithm for data association in multitarget tracking,” IEEE Trans. Aerosp. Electron. Syst. 31, 458–468 (1995).

E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: a survey,” IEEE Trans. Aerosp. Electron. Syst. 34, 103–123 (1998).

Infrared Phys. Technol. (2)

H. Deng and J. Liu, “Infrared small target detection based on the self-information map,” Infrared Phys. Technol. 54, 100–107 (2011).
[CrossRef]

K. Huang and X. Mao, “Detectability of infrared small targets,” Infrared Phys. Technol. 53, 208–217 (2010).
[CrossRef]

Laser Infrared (1)

B. Zhou, L. Sun, and J. Ying, “Special problems of target detection in super wide angle staring system,” Laser Infrared 38, 334–337 (2008).

Opt. Electron. Eng. (1)

C. Li, C. Han, and H. Zhu, “Modified generalized probability data association algorithm,” Opt. Electron. Eng. 33, 13–17 (2006).

Opt. Laser Technol. (1)

X. Bai and F. Zhou, “Hit-or-miss transform based infrared dim small target enhancement,” Opt. Laser Technol. 43, 1084–1090 (2011).
[CrossRef]

Proc. SPIE (4)

P.-O. Nouguès, P. Baize, and F. Roland, “Third-generation naval IRST using the step-and-stare architecture,” Proc. SPIE 6940, 69401B (2008).

E. H. Takken and J. R. Waterman, “Navy DAS Program for SBIRST,” Proc. SPIE 5406, 295–304 (2004).
[CrossRef]

D. Manson, M. Richards, T. Nicolson, T. Khan, D. Barron, and G. Evans, “Staring naval infrared search and track demonstrator,” Proc. SPIE 5987, 598706 (2005).
[CrossRef]

J.-C. Fontanella, D. Delacourt, and Y. Klein, “ARTEMIS: first naval staring IRST in service,” Proc. SPIE 7660, 766006 (2010).

Other (7)

J. Fujiki, “Calibration of radially symmetric distortion based on linearity in the calibrated image,” in IEEE International Conference on Computer Vision Workshops, Barcelona, 2011, pp. 288–295.

M. Saito, K. Kitaguchi, and G. Kimura, “People detection and tracking from fish-eye image based on probabilistic appearance model,” in SICE Annual Conference (2011), pp. 435–440.

Y. Pan and H. Cheng, “Hyper-field of view monitoring optical system,” in ICEMI (2011), pp. 107–109.

R. T. Hintz, J. Allen, M. Chen, T. Price, and G. Goetz, “UAV Infrared Search and Track (IRST)/Eyesafe Laser Range Finder (ELR) System,” (2005).

B. Ristic, M. Hernandez, A. Farina, and H.-T. Ong, “Analysis of radar allocation requirements for an IRST aided tracking of anti-ship missiles,” (2006).

L. N. Smith and J. R. Waterman, “Real-time fleet protection,” (2007).

Y. Bar-Shalom and T. E. Fortman, Tracking and Data Association (Academic, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Construction of the IR multitarget tracking system.

Fig. 2.
Fig. 2.

Block diagram of the system hardware.

Fig. 3.
Fig. 3.

Flow process chart of the modified GPDA algorithm.

Fig. 4.
Fig. 4.

Map of the multitarget tracking experiment.

Fig. 5.
Fig. 5.

IR image 1 of the multitarget tracking experiment. (a) 500th frame, (b) 600th frame, (c) 700th frame, and (d) 800th frame.

Fig. 6.
Fig. 6.

Three-dimensional image 1 of the multitarget tracking experiment. (a) 500th frame, (b) 600th frame, (c) 700th frame, and (d) 800th frame.

Fig. 7.
Fig. 7.

Silent image 1 of the multitarget tracking experiment. (a) 500th frame, (b) 600th frame, (c) 700th frame, and (d) 800th frame.

Fig. 8.
Fig. 8.

IR image 2 of the multitarget tracking experiment. (a) 900th frame, (b) 1000th frame, (c) 1100th frame, and (d) 1200th frame.

Fig. 9.
Fig. 9.

Three-dimensional image 2 of the multitarget tracking experiment. (a) 900th frame, (b) 1000th frame, (c) 1100th frame, and (d) 1200th frame.

Fig. 10.
Fig. 10.

Silent image 2 of the multitarget tracking experiment. (a) 900th frame, (b) 1000th frame, (c) 1100th frame, and (d) 1200th frame.

Fig. 11.
Fig. 11.

IR image 3 of the multitarget tracking experiment. (a) 1300th frame, (b) 1400th frame, (c) 1500th frame, and (d) 1600th frame.

Fig. 12.
Fig. 12.

Three-dimensional image 3 of the multitarget tracking experiment. (a) 1300th frame, (b) 1400th frame, (c) 1500th frame, and (d) 1600th frame.

Fig. 13.
Fig. 13.

Silent image 3 of the multitarget tracking experiment. (a) 1300th frame, (b) 1400th frame, (c) 1500th frame, and (d) 1600th frame.

Fig. 14.
Fig. 14.

Danger class sequencing and target trajectories of the multitarget tracking experiment. (a) Track initiation of target 1. (b) Multitarget tracking. (c) Track termination of target 1.

Fig. 15.
Fig. 15.

Full trajectory of the two targets.

Fig. 16.
Fig. 16.

Comparison of real and theoretic trajectory of the two targets. (a) Trajectory comparison of target 1. (b) Trajectory comparison of target 2.

Tables (1)

Tables Icon

Table 1. Main Parameters of the IR Multitarget Tracking System

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

|zi,j(k)z^m,jL(k)||(Δtk2kΔtk2k1·DminDminvmaxΔtk1kΔtk1kΔtk2k11)·(zk1,izk2,i)|
|zi,j(k)z^m,jR(k)||[Δtk2kΔtk2k1·DminDminvmaxΔtk1kΔtk1kΔtk2k1Δtk1kΔtk3k1(Δtk1k)2Δtk2k1Δtk3k11](zk1,izk2,i)+Δtk1kΔtk2k1+(Δtk1k)2Δtk3k1Δtk3k2(zk2,izk3,i)|,
{ρ=x1cosθ+y1sinθρ=x2cosθ+y2sinθ.
Nh=j=1nqjdj=Ejhr,j=1,2,,n{qj=1,dj<Tdqj=0,djTd.

Metrics