Abstract

The depth of focus of the latest-model “Chip-on-the-Tip” laparoscopes is limited to 10 cm. The proposed omnifocus laparoscope stretches this depth of focus to 160 cm. The proposed laparoscope is omnifocus, which means that all spots in the picture are in focus, not just certain designated spots as in autofocus devices. This is important because the entire scene needs to be focused during surgery. The omnifocus laparoscope is equipped with an array of color video cameras, each focused at a different distance. The distance information from the laparoscopic profilometer is used to generate a single omnifocused image.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Fischer, “Optics for head-mounted displays,” Inf. Disp. 10, 12–18 (1994).
  2. J. D. Ackerman, K. Keller, and H. Fuchs, “Surface reconstruction of abdominal organs using laparoscopic structured light for augmented reality,” Proc. SPIE 4661, 39–46 (2002).
    [CrossRef]
  3. D. Bartz, M. Hauth, and K. Mueller, “Advanced virtual medicine: techniques and applications for virtual endoscopy and soft-tissue-simulation,” in IEEE Visualization Tutorial (IEEE, 2003), Vol. T7.
  4. N. Ishikawa, M. Oda, H. Yasumatsu, and G. Watanabe, “Three-dimensional monitor in endoscopic surgery,” Surg. Endosc. 18, 1149–1150 (2004).
  5. K. Iizuka, “3D microscope,” Proc. SPIE 6861, 686113 (2008).
    [CrossRef]
  6. F. Corcione, C. Esposito, D. Cuccurullo, A. Settembre, N. Miranda, F. Amato, F. Pirozzi, and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience,” Surg. Endosc. 19, 117–119 (2005).
    [CrossRef]
  7. M. Rentschler, A. Hadzialic, J. Dumpert, S. R. Platt, S. Farritor, and D. Oleynikov, “In vivo robots for laparoscopic surgery,” in Medicine Meets Virtual Reality 12, J. D. Westwood, R. S. Haluck, H. M. Hoffman, G. T. Mogel, R. Phillips, and R. A. Robb, eds. (IOS, 2004), pp. 316–322.
  8. K. Iizuka, “Omnifocus video camera,” Rev. Sci. Instrum. 82, 045105 (2011).
    [CrossRef]
  9. K. Iizuka, “Surface imaging using a noncontact divergence-ratio axi-vision camera profilometer for laparoscopic and endoscopic applications,” Appl. Opt. 52, 4663–4671 (2013).
    [CrossRef]
  10. H. H. Hopkins, “Physics of the fiberoptic endoscope,” in Endoscopy, G. Berci, ed. (Appleton-Century-Croft, 1976), pp. 27–63.
  11. K. Iizuka, “Divergence-ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
    [CrossRef]

2013 (1)

2011 (1)

K. Iizuka, “Omnifocus video camera,” Rev. Sci. Instrum. 82, 045105 (2011).
[CrossRef]

2008 (1)

K. Iizuka, “3D microscope,” Proc. SPIE 6861, 686113 (2008).
[CrossRef]

2006 (1)

K. Iizuka, “Divergence-ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
[CrossRef]

2005 (1)

F. Corcione, C. Esposito, D. Cuccurullo, A. Settembre, N. Miranda, F. Amato, F. Pirozzi, and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience,” Surg. Endosc. 19, 117–119 (2005).
[CrossRef]

2004 (1)

N. Ishikawa, M. Oda, H. Yasumatsu, and G. Watanabe, “Three-dimensional monitor in endoscopic surgery,” Surg. Endosc. 18, 1149–1150 (2004).

2002 (1)

J. D. Ackerman, K. Keller, and H. Fuchs, “Surface reconstruction of abdominal organs using laparoscopic structured light for augmented reality,” Proc. SPIE 4661, 39–46 (2002).
[CrossRef]

1994 (1)

R. E. Fischer, “Optics for head-mounted displays,” Inf. Disp. 10, 12–18 (1994).

Ackerman, J. D.

J. D. Ackerman, K. Keller, and H. Fuchs, “Surface reconstruction of abdominal organs using laparoscopic structured light for augmented reality,” Proc. SPIE 4661, 39–46 (2002).
[CrossRef]

Amato, F.

F. Corcione, C. Esposito, D. Cuccurullo, A. Settembre, N. Miranda, F. Amato, F. Pirozzi, and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience,” Surg. Endosc. 19, 117–119 (2005).
[CrossRef]

Bartz, D.

D. Bartz, M. Hauth, and K. Mueller, “Advanced virtual medicine: techniques and applications for virtual endoscopy and soft-tissue-simulation,” in IEEE Visualization Tutorial (IEEE, 2003), Vol. T7.

Caiazzo, P.

F. Corcione, C. Esposito, D. Cuccurullo, A. Settembre, N. Miranda, F. Amato, F. Pirozzi, and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience,” Surg. Endosc. 19, 117–119 (2005).
[CrossRef]

Corcione, F.

F. Corcione, C. Esposito, D. Cuccurullo, A. Settembre, N. Miranda, F. Amato, F. Pirozzi, and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience,” Surg. Endosc. 19, 117–119 (2005).
[CrossRef]

Cuccurullo, D.

F. Corcione, C. Esposito, D. Cuccurullo, A. Settembre, N. Miranda, F. Amato, F. Pirozzi, and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience,” Surg. Endosc. 19, 117–119 (2005).
[CrossRef]

Dumpert, J.

M. Rentschler, A. Hadzialic, J. Dumpert, S. R. Platt, S. Farritor, and D. Oleynikov, “In vivo robots for laparoscopic surgery,” in Medicine Meets Virtual Reality 12, J. D. Westwood, R. S. Haluck, H. M. Hoffman, G. T. Mogel, R. Phillips, and R. A. Robb, eds. (IOS, 2004), pp. 316–322.

Esposito, C.

F. Corcione, C. Esposito, D. Cuccurullo, A. Settembre, N. Miranda, F. Amato, F. Pirozzi, and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience,” Surg. Endosc. 19, 117–119 (2005).
[CrossRef]

Farritor, S.

M. Rentschler, A. Hadzialic, J. Dumpert, S. R. Platt, S. Farritor, and D. Oleynikov, “In vivo robots for laparoscopic surgery,” in Medicine Meets Virtual Reality 12, J. D. Westwood, R. S. Haluck, H. M. Hoffman, G. T. Mogel, R. Phillips, and R. A. Robb, eds. (IOS, 2004), pp. 316–322.

Fischer, R. E.

R. E. Fischer, “Optics for head-mounted displays,” Inf. Disp. 10, 12–18 (1994).

Fuchs, H.

J. D. Ackerman, K. Keller, and H. Fuchs, “Surface reconstruction of abdominal organs using laparoscopic structured light for augmented reality,” Proc. SPIE 4661, 39–46 (2002).
[CrossRef]

Hadzialic, A.

M. Rentschler, A. Hadzialic, J. Dumpert, S. R. Platt, S. Farritor, and D. Oleynikov, “In vivo robots for laparoscopic surgery,” in Medicine Meets Virtual Reality 12, J. D. Westwood, R. S. Haluck, H. M. Hoffman, G. T. Mogel, R. Phillips, and R. A. Robb, eds. (IOS, 2004), pp. 316–322.

Hauth, M.

D. Bartz, M. Hauth, and K. Mueller, “Advanced virtual medicine: techniques and applications for virtual endoscopy and soft-tissue-simulation,” in IEEE Visualization Tutorial (IEEE, 2003), Vol. T7.

Hopkins, H. H.

H. H. Hopkins, “Physics of the fiberoptic endoscope,” in Endoscopy, G. Berci, ed. (Appleton-Century-Croft, 1976), pp. 27–63.

Iizuka, K.

K. Iizuka, “Surface imaging using a noncontact divergence-ratio axi-vision camera profilometer for laparoscopic and endoscopic applications,” Appl. Opt. 52, 4663–4671 (2013).
[CrossRef]

K. Iizuka, “Omnifocus video camera,” Rev. Sci. Instrum. 82, 045105 (2011).
[CrossRef]

K. Iizuka, “3D microscope,” Proc. SPIE 6861, 686113 (2008).
[CrossRef]

K. Iizuka, “Divergence-ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
[CrossRef]

Ishikawa, N.

N. Ishikawa, M. Oda, H. Yasumatsu, and G. Watanabe, “Three-dimensional monitor in endoscopic surgery,” Surg. Endosc. 18, 1149–1150 (2004).

Keller, K.

J. D. Ackerman, K. Keller, and H. Fuchs, “Surface reconstruction of abdominal organs using laparoscopic structured light for augmented reality,” Proc. SPIE 4661, 39–46 (2002).
[CrossRef]

Miranda, N.

F. Corcione, C. Esposito, D. Cuccurullo, A. Settembre, N. Miranda, F. Amato, F. Pirozzi, and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience,” Surg. Endosc. 19, 117–119 (2005).
[CrossRef]

Mueller, K.

D. Bartz, M. Hauth, and K. Mueller, “Advanced virtual medicine: techniques and applications for virtual endoscopy and soft-tissue-simulation,” in IEEE Visualization Tutorial (IEEE, 2003), Vol. T7.

Oda, M.

N. Ishikawa, M. Oda, H. Yasumatsu, and G. Watanabe, “Three-dimensional monitor in endoscopic surgery,” Surg. Endosc. 18, 1149–1150 (2004).

Oleynikov, D.

M. Rentschler, A. Hadzialic, J. Dumpert, S. R. Platt, S. Farritor, and D. Oleynikov, “In vivo robots for laparoscopic surgery,” in Medicine Meets Virtual Reality 12, J. D. Westwood, R. S. Haluck, H. M. Hoffman, G. T. Mogel, R. Phillips, and R. A. Robb, eds. (IOS, 2004), pp. 316–322.

Pirozzi, F.

F. Corcione, C. Esposito, D. Cuccurullo, A. Settembre, N. Miranda, F. Amato, F. Pirozzi, and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience,” Surg. Endosc. 19, 117–119 (2005).
[CrossRef]

Platt, S. R.

M. Rentschler, A. Hadzialic, J. Dumpert, S. R. Platt, S. Farritor, and D. Oleynikov, “In vivo robots for laparoscopic surgery,” in Medicine Meets Virtual Reality 12, J. D. Westwood, R. S. Haluck, H. M. Hoffman, G. T. Mogel, R. Phillips, and R. A. Robb, eds. (IOS, 2004), pp. 316–322.

Rentschler, M.

M. Rentschler, A. Hadzialic, J. Dumpert, S. R. Platt, S. Farritor, and D. Oleynikov, “In vivo robots for laparoscopic surgery,” in Medicine Meets Virtual Reality 12, J. D. Westwood, R. S. Haluck, H. M. Hoffman, G. T. Mogel, R. Phillips, and R. A. Robb, eds. (IOS, 2004), pp. 316–322.

Settembre, A.

F. Corcione, C. Esposito, D. Cuccurullo, A. Settembre, N. Miranda, F. Amato, F. Pirozzi, and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience,” Surg. Endosc. 19, 117–119 (2005).
[CrossRef]

Watanabe, G.

N. Ishikawa, M. Oda, H. Yasumatsu, and G. Watanabe, “Three-dimensional monitor in endoscopic surgery,” Surg. Endosc. 18, 1149–1150 (2004).

Yasumatsu, H.

N. Ishikawa, M. Oda, H. Yasumatsu, and G. Watanabe, “Three-dimensional monitor in endoscopic surgery,” Surg. Endosc. 18, 1149–1150 (2004).

Appl. Opt. (1)

Inf. Disp. (1)

R. E. Fischer, “Optics for head-mounted displays,” Inf. Disp. 10, 12–18 (1994).

Proc. SPIE (2)

J. D. Ackerman, K. Keller, and H. Fuchs, “Surface reconstruction of abdominal organs using laparoscopic structured light for augmented reality,” Proc. SPIE 4661, 39–46 (2002).
[CrossRef]

K. Iizuka, “3D microscope,” Proc. SPIE 6861, 686113 (2008).
[CrossRef]

Rev. Sci. Instrum. (2)

K. Iizuka, “Omnifocus video camera,” Rev. Sci. Instrum. 82, 045105 (2011).
[CrossRef]

K. Iizuka, “Divergence-ratio axi-vision camera (Divcam): a distance mapping camera,” Rev. Sci. Instrum. 77, 045111 (2006).
[CrossRef]

Surg. Endosc. (2)

N. Ishikawa, M. Oda, H. Yasumatsu, and G. Watanabe, “Three-dimensional monitor in endoscopic surgery,” Surg. Endosc. 18, 1149–1150 (2004).

F. Corcione, C. Esposito, D. Cuccurullo, A. Settembre, N. Miranda, F. Amato, F. Pirozzi, and P. Caiazzo, “Advantages and limits of robot-assisted laparoscopic surgery: preliminary experience,” Surg. Endosc. 19, 117–119 (2005).
[CrossRef]

Other (3)

M. Rentschler, A. Hadzialic, J. Dumpert, S. R. Platt, S. Farritor, and D. Oleynikov, “In vivo robots for laparoscopic surgery,” in Medicine Meets Virtual Reality 12, J. D. Westwood, R. S. Haluck, H. M. Hoffman, G. T. Mogel, R. Phillips, and R. A. Robb, eds. (IOS, 2004), pp. 316–322.

D. Bartz, M. Hauth, and K. Mueller, “Advanced virtual medicine: techniques and applications for virtual endoscopy and soft-tissue-simulation,” in IEEE Visualization Tutorial (IEEE, 2003), Vol. T7.

H. H. Hopkins, “Physics of the fiberoptic endoscope,” in Endoscopy, G. Berci, ed. (Appleton-Century-Croft, 1976), pp. 27–63.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Block diagram of the omnifocus laparoscope.

Fig. 2.
Fig. 2.

Light path along the laparoscope.

Fig. 3.
Fig. 3.

Block diagram of the laparoscopic profilometer subsystem.

Fig. 4.
Fig. 4.

Pixel switching subsystem to select the pixel of the color video camera according to the distance information from the laparoscopic profilometer.

Fig. 5.
Fig. 5.

Geometry of the objects.

Fig. 6.
Fig. 6.

Images at the monitoring points of the system.

Fig. 7.
Fig. 7.

Setting the diopter ring and the corresponding images. (a) Eyepiece lens is moved toward the distal end of the laparoscope. (b) Eyepiece lens is moved away from the distal end of the laparoscope.

Fig. 8.
Fig. 8.

Object geometry (bottom) and the corresponding image taken by the omnifocus laparoscope (top).

Fig. 9.
Fig. 9.

Image comparison. (a) Image taken by the omnifocus laparoscope. (b) Same image taken by an ordinary laparoscope.

Fig. 10.
Fig. 10.

Image resolution test. The object geometry (bottom) and the resulting image (top).

Fig. 11.
Fig. 11.

Increasing the resolution by reducing the separation between objects. Object geometry (bottom) and resulting image (top).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z=sR1.

Metrics