Abstract

In this paper we investigate how the color of a pigmented polymer is affected by reduction of the reflectance at the air–polymer interface. Both theoretical and experimental investigations show modified diffuse-direct reflectance spectra when the reflectance of the surface is lowered. Specifically it is found that the color change is manifested as an increase in chroma, leading to a clearer color experience. The experimental implementation is done using random tapered surface structures replicated in polymer from silicon masters using hot embossing.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  2. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
    [CrossRef]
  3. S. Wilson and M. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
    [CrossRef]
  4. H. Jung and K.-H. Jeong, “Monolithic polymer microlens arrays with antireflective nanostructures,” Appl. Phys. Lett. 101, 203102 (2012).
    [CrossRef]
  5. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–56 (1997).
    [CrossRef]
  6. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999).
    [CrossRef]
  7. C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
    [CrossRef]
  8. C.-H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33, 2224–2226 (2008).
    [CrossRef]
  9. J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
    [CrossRef]
  10. C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507 (2005).
    [CrossRef]
  11. R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: an analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
    [CrossRef]
  12. H.-R. Lee, D. Jae Kim, and K.-H. Lee, “Anti-reflective coating for the deep coloring of pet fabrics using an atmospheric pressure plasma technique,” Surf. Coat. Technol. 142–144, 468–473 (2001).
    [CrossRef]
  13. H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A 83, 130–135 (2000).
    [CrossRef]
  14. A. B. Christiansen, J. Clausen, N. A. Mortensen, and A. Kristensen, “Minimizing scattering from antireflective surfaces replicated from low-aspect-ratio black silicon,” Appl. Phys. Lett. 101, 131902 (2012).
    [CrossRef]
  15. G. A. Klein, Industrial Color Physics (Springer, 2010).
  16. M. Elias, P. Castiglione, and G. Elias, “Influence of interface roughness on surface and bulk scattering,” J. Opt. Soc. Am. A 27, 1265–1273 (2010).
    [CrossRef]
  17. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  18. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” Natl. Bur. Stand. (U.S.), Monogr. 160, 1–52 (1977).
  19. L. B. Wolff, “Diffuse-reflectance model for smooth dielectric surfaces,” J. Opt. Soc. Am. A 11, 2956–2968 (1994).
    [CrossRef]
  20. G. Sharma, Digital Color Imaging Handbook (CRC Press, 2002).

2012

H. Jung and K.-H. Jeong, “Monolithic polymer microlens arrays with antireflective nanostructures,” Appl. Phys. Lett. 101, 203102 (2012).
[CrossRef]

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: an analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
[CrossRef]

A. B. Christiansen, J. Clausen, N. A. Mortensen, and A. Kristensen, “Minimizing scattering from antireflective surfaces replicated from low-aspect-ratio black silicon,” Appl. Phys. Lett. 101, 131902 (2012).
[CrossRef]

2010

M. Elias, P. Castiglione, and G. Elias, “Influence of interface roughness on surface and bulk scattering,” J. Opt. Soc. Am. A 27, 1265–1273 (2010).
[CrossRef]

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

2008

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
[CrossRef]

C.-H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33, 2224–2226 (2008).
[CrossRef]

2005

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507 (2005).
[CrossRef]

2001

H.-R. Lee, D. Jae Kim, and K.-H. Lee, “Anti-reflective coating for the deep coloring of pet fabrics using an atmospheric pressure plasma technique,” Surf. Coat. Technol. 142–144, 468–473 (2001).
[CrossRef]

2000

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A 83, 130–135 (2000).
[CrossRef]

1999

1997

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–56 (1997).
[CrossRef]

1994

1982

S. Wilson and M. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

1977

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” Natl. Bur. Stand. (U.S.), Monogr. 160, 1–52 (1977).

1973

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

1967

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Aho, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Becker, H.

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A 83, 130–135 (2000).
[CrossRef]

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Castiglione, P.

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, 1960).

Chen, T.-H.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507 (2005).
[CrossRef]

Cheng, C.-C.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507 (2005).
[CrossRef]

Christiansen, A. B.

A. B. Christiansen, J. Clausen, N. A. Mortensen, and A. Kristensen, “Minimizing scattering from antireflective surfaces replicated from low-aspect-ratio black silicon,” Appl. Phys. Lett. 101, 131902 (2012).
[CrossRef]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

Clausen, J.

A. B. Christiansen, J. Clausen, N. A. Mortensen, and A. Kristensen, “Minimizing scattering from antireflective surfaces replicated from low-aspect-ratio black silicon,” Appl. Phys. Lett. 101, 131902 (2012).
[CrossRef]

Deepak,

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: an analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
[CrossRef]

Elias, G.

Elias, M.

Ginsberg, I. W.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” Natl. Bur. Stand. (U.S.), Monogr. 160, 1–52 (1977).

Guina, M.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Hane, K.

Heim, U.

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A 83, 130–135 (2000).
[CrossRef]

Ho, B. J.

Hsia, J. J.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” Natl. Bur. Stand. (U.S.), Monogr. 160, 1–52 (1977).

Hutley, M.

S. Wilson and M. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

Jae Kim, D.

H.-R. Lee, D. Jae Kim, and K.-H. Lee, “Anti-reflective coating for the deep coloring of pet fabrics using an atmospheric pressure plasma technique,” Surf. Coat. Technol. 142–144, 468–473 (2001).
[CrossRef]

Jeong, K.-H.

H. Jung and K.-H. Jeong, “Monolithic polymer microlens arrays with antireflective nanostructures,” Appl. Phys. Lett. 101, 203102 (2012).
[CrossRef]

Jiang, B.

C.-H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33, 2224–2226 (2008).
[CrossRef]

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
[CrossRef]

Jiang, P.

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
[CrossRef]

C.-H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33, 2224–2226 (2008).
[CrossRef]

Jung, H.

H. Jung and K.-H. Jeong, “Monolithic polymer microlens arrays with antireflective nanostructures,” Appl. Phys. Lett. 101, 203102 (2012).
[CrossRef]

Kanamori, Y.

Klein, G. A.

G. A. Klein, Industrial Color Physics (Springer, 2010).

Kontio, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Kristensen, A.

A. B. Christiansen, J. Clausen, N. A. Mortensen, and A. Kristensen, “Minimizing scattering from antireflective surfaces replicated from low-aspect-ratio black silicon,” Appl. Phys. Lett. 101, 131902 (2012).
[CrossRef]

Kuo, Y.-H.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507 (2005).
[CrossRef]

Lalanne, P.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–56 (1997).
[CrossRef]

Lee, H.-R.

H.-R. Lee, D. Jae Kim, and K.-H. Lee, “Anti-reflective coating for the deep coloring of pet fabrics using an atmospheric pressure plasma technique,” Surf. Coat. Technol. 142–144, 468–473 (2001).
[CrossRef]

Lee, K.-H.

H.-R. Lee, D. Jae Kim, and K.-H. Lee, “Anti-reflective coating for the deep coloring of pet fabrics using an atmospheric pressure plasma technique,” Surf. Coat. Technol. 142–144, 468–473 (2001).
[CrossRef]

Limperis, T.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” Natl. Bur. Stand. (U.S.), Monogr. 160, 1–52 (1977).

Lin, C.-L.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507 (2005).
[CrossRef]

Morris, G. M.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–56 (1997).
[CrossRef]

Mortensen, N. A.

A. B. Christiansen, J. Clausen, N. A. Mortensen, and A. Kristensen, “Minimizing scattering from antireflective surfaces replicated from low-aspect-ratio black silicon,” Appl. Phys. Lett. 101, 131902 (2012).
[CrossRef]

Narayanan Unni, K. N.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: an analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
[CrossRef]

Nicodemus, F. E.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” Natl. Bur. Stand. (U.S.), Monogr. 160, 1–52 (1977).

Niemi, T.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Polojärvi, V.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Richmond, J. C.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” Natl. Bur. Stand. (U.S.), Monogr. 160, 1–52 (1977).

Salmi, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Sasaki, M.

Schramm, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Sharma, G.

G. Sharma, Digital Color Imaging Handbook (CRC Press, 2002).

Singh, R.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: an analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
[CrossRef]

Solanki, A.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: an analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
[CrossRef]

Sun, C.-H.

C.-H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33, 2224–2226 (2008).
[CrossRef]

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
[CrossRef]

Tommila, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Tukiainen, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Turtiainen, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Viheriälä, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Wilson, S.

S. Wilson and M. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Wolff, L. B.

Wu, C.-C.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507 (2005).
[CrossRef]

Yang, C.-J.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507 (2005).
[CrossRef]

Yeh, Y.-H.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507 (2005).
[CrossRef]

Appl. Phys. Lett.

H. Jung and K.-H. Jeong, “Monolithic polymer microlens arrays with antireflective nanostructures,” Appl. Phys. Lett. 101, 203102 (2012).
[CrossRef]

C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008).
[CrossRef]

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507 (2005).
[CrossRef]

A. B. Christiansen, J. Clausen, N. A. Mortensen, and A. Kristensen, “Minimizing scattering from antireflective surfaces replicated from low-aspect-ratio black silicon,” Appl. Phys. Lett. 101, 131902 (2012).
[CrossRef]

Endeavour

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

J. Opt. Soc. Am. A

Nanotechnology

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–56 (1997).
[CrossRef]

Natl. Bur. Stand. (U.S.), Monogr.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” Natl. Bur. Stand. (U.S.), Monogr. 160, 1–52 (1977).

Nature

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973).
[CrossRef]

Opt. Acta

S. Wilson and M. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Opt. Lett.

Opt. Mater.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: an analysis of various techniques,” Opt. Mater. 34, 716–723 (2012).
[CrossRef]

Sens. Actuators A

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A 83, 130–135 (2000).
[CrossRef]

Sol. Energy Mater. Sol. Cells

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010).
[CrossRef]

Surf. Coat. Technol.

H.-R. Lee, D. Jae Kim, and K.-H. Lee, “Anti-reflective coating for the deep coloring of pet fabrics using an atmospheric pressure plasma technique,” Surf. Coat. Technol. 142–144, 468–473 (2001).
[CrossRef]

Other

G. Sharma, Digital Color Imaging Handbook (CRC Press, 2002).

S. Chandrasekhar, Radiative Transfer (Dover, 1960).

G. A. Klein, Industrial Color Physics (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Illustration of specular and diffuse reflection of a light ray for a pigmented polymer. (b) Surface and bulk reflections of a pigmented polymer under diffuse illumination in the case of flat surface. (c) The surface reflectance is lowered in the presence of ARS.

Fig. 2.
Fig. 2.

Left: scanning electron micrographs of a silicon master seen from the top and from the side. Right: ABS surface after embossing (a thin layer of gold has been applied for imaging). The scale bar applies to all images. The random subwavelength nature of the ARS is evident.

Fig. 3.
Fig. 3.

(a) Definition of the angles of the incident and reflected light. (b) Illustration of the transmission of diffusive flux through the surface of the polymer. (c) The first-order diffuse reflectance from the bulk and the transmission and reflection of this flux. Figure inspired by [15].

Fig. 4.
Fig. 4.

Based on measured reflectance spectra are the changes in these spectra due to modifications in the surface reflectance calculated based on the proposed theoretical model. The components of the color changes for the three colors due to the lowering of α are shown. The circles mark the experimentally measured color changes plotted at the α with the best fit.

Fig. 5.
Fig. 5.

Measured diffuse-direct reflectances for the three colors blue, green, and red for the case of planar surfaces (full lines) and surfaces with ARS (dashed lines). The corresponding color changes are given in Table 3.

Fig. 6.
Fig. 6.

Blue, green, and red ABS samples imprinted with a silicon stamp where half of the stamp was flat and the other half was covered with ARS. The left parts of the samples are flat and the right parts are with ARS.

Tables (3)

Tables Icon

Table 1. Simulated Color Changes Compared to the Color of a Flat Surface for Four Specific Values of αa

Tables Icon

Table 2. Color Coordinates Calculated from Experimentally Measured Reflectance Spectra (Fig. 5) for Samples with Flat Surfaces and with ARS

Tables Icon

Table 3. Experimentally Measured Changes in Cylindrical Color Coordinates, When Going from Flat Samples to Samples with ARS

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R(θi)=αRf(θi),
R(θr)={αRf(θr)forθrθc1forθr>θc,
Li(θi)={[1R(θi)]n2Liθiθc0θi>θc.
ρ=SS+K,
fr=dLrdEi=ρ4π1μi+μrHρ(μi)Hρ(μr).
dLr(1)=fr(cosθi,cosθr)dEi=fr(cosθi,cosθr)Licosθidωi,
Lr(1)=2π0π2fr(cosθi,cosθr)Licosθisinθidθi.
Lr(j)=2π0π2fr(cosθi,cosθr)×R(θi)Lr(j1)cosθisinθidθi.
Lr=R(θr)Li+j=1[1R(θr)]Lr(j)n2,

Metrics