Abstract

In resonator micro-optic gyros (RMOGs), the interference between the backreflection light beam of one pathway and the signal light beam of the other pathway deteriorates the gyro output waveforms, resulting in severe reduction in the gyro’s accuracy. In this paper, an integer period sampling (IPS) method is introduced to minimize the sampling error caused by backreflection in RMOG for the first time to our knowledge. The experimental results show that both the bias repeatability and the short-term bias stability become better when the IPS condition is satisfied. A bias stability of 0.41°/s over one hour with an integration time of 10 s has been realized in a RMOG that employs a silica waveguide ring resonator.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
    [CrossRef]
  2. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Aremenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2, 370–404 (2010).
  3. M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).
  4. C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
    [CrossRef]
  5. Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
    [CrossRef]
  6. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
    [CrossRef]
  7. H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25, 198–201 (2013).
    [CrossRef]
  8. H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29, 85–90 (2011).
    [CrossRef]
  9. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J., 4, 1844–1854 (2012).
    [CrossRef]
  10. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” in 14th International Conference on Transparent Optical Networks (IEEE, 2012), paper Th.A4.5.
  11. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013).
    [CrossRef]
  12. F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Theoretical investigation of InP buried ring resonators for new angular velocity sensors,” Opt. Eng. 52, 024601 (2013).
    [CrossRef]
  13. C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, “Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Eur. Opt. Soc. Rapid Pub. 8, 13050 (2013).
  14. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23, 3916–3924 (1984).
    [CrossRef]
  15. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Backscattering in an optical passive ring-resonator gyro: experiment,” Appl. Opt. 25, 4448–4451 (1986).
    [CrossRef]
  16. K. Hotate and K. Tabe, “Drift of an optical fiber gyroscope caused by the Faraday effect: influence of the earth’s magnetic field,” Appl. Opt. 25, 1086–1092 (1986).
    [CrossRef]
  17. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro,” Appl. Opt. 25, 2606–2612 (1986).
    [CrossRef]
  18. F. Zarinetchi and S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11, 401–403 (1986).
    [CrossRef]
  19. T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
  20. M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990).
    [CrossRef]
  21. X. Zhang and K. Zhou, “Analysis on two-reflection-dots model outside resonator of R-MOG,” Chin. J. Sens. Actuat. 22, 811–815 (2009).
  22. http://en.m.wikipedia.org/wiki/Backscatter .
  23. H. J. Arditty, H. J. Shaw, M. Chodorow, and R. K. Kompfner, “Re-entrant fiber-optic approach to rotation sensing,” Proc. SPIE 157, 138–148 (1978).
  24. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech, 2002), pp. 61–63 (in Chinese).
  25. M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Publishing House of Electronics Industry, 2009), pp. 239–242 (in Chinese).
  26. L. Feng, M. Lei, H. Liu, Y. Zhi, and J. Wang, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Opt. 52, 1668–1675 (2013).
    [CrossRef]
  27. M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Publishing House of Electronics Industry, 2009), pp. 299–304 (in Chinese).
  28. H. Ma, Y. Chen, M. Li, and Z. Jin, “Transient response of a resonator fiber optic gyro with triangular wave phase modulation,” Appl. Opt. 49, 6253–6263 (2010).
    [CrossRef]
  29. L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
    [CrossRef]
  30. L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by linear phase modulation method used in resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
    [CrossRef]
  31. R. E. Meyer, S. Ezekiel, and D. W. Stowe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8, 644–646 (1983).
    [CrossRef]
  32. X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).

2013 (5)

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013).
[CrossRef]

F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Theoretical investigation of InP buried ring resonators for new angular velocity sensors,” Opt. Eng. 52, 024601 (2013).
[CrossRef]

C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, “Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Eur. Opt. Soc. Rapid Pub. 8, 13050 (2013).

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25, 198–201 (2013).
[CrossRef]

L. Feng, M. Lei, H. Liu, Y. Zhi, and J. Wang, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Opt. 52, 1668–1675 (2013).
[CrossRef]

2012 (2)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J., 4, 1844–1854 (2012).
[CrossRef]

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by linear phase modulation method used in resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

2011 (3)

2010 (3)

2009 (2)

2008 (1)

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

2001 (1)

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

1990 (2)

T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990).
[CrossRef]

1986 (4)

1984 (1)

1983 (1)

1978 (1)

H. J. Arditty, H. J. Shaw, M. Chodorow, and R. K. Kompfner, “Re-entrant fiber-optic approach to rotation sensing,” Proc. SPIE 157, 138–148 (1978).

Arditty, H. J.

H. J. Arditty, H. J. Shaw, M. Chodorow, and R. K. Kompfner, “Re-entrant fiber-optic approach to rotation sensing,” Proc. SPIE 157, 138–148 (1978).

Aremenise, M. N.

Armenise, M. N.

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013).
[CrossRef]

F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Theoretical investigation of InP buried ring resonators for new angular velocity sensors,” Opt. Eng. 52, 024601 (2013).
[CrossRef]

C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, “Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Eur. Opt. Soc. Rapid Pub. 8, 13050 (2013).

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J., 4, 1844–1854 (2012).
[CrossRef]

C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
[CrossRef]

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” in 14th International Conference on Transparent Optical Networks (IEEE, 2012), paper Th.A4.5.

Barbour, N.

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Publishing House of Electronics Industry, 2009), pp. 239–242 (in Chinese).

M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Publishing House of Electronics Industry, 2009), pp. 299–304 (in Chinese).

Campanella, C. E.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, “Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Eur. Opt. Soc. Rapid Pub. 8, 13050 (2013).

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Aremenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2, 370–404 (2010).

C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
[CrossRef]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” in 14th International Conference on Transparent Optical Networks (IEEE, 2012), paper Th.A4.5.

Campanella, C. M.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, “Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Eur. Opt. Soc. Rapid Pub. 8, 13050 (2013).

Cardarelli, D.

T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).

Chen, Y.

Chodorow, M.

H. J. Arditty, H. J. Shaw, M. Chodorow, and R. K. Kompfner, “Re-entrant fiber-optic approach to rotation sensing,” Proc. SPIE 157, 138–148 (1978).

Ciminelli, C.

F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Theoretical investigation of InP buried ring resonators for new angular velocity sensors,” Opt. Eng. 52, 024601 (2013).
[CrossRef]

C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, “Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Eur. Opt. Soc. Rapid Pub. 8, 13050 (2013).

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013).
[CrossRef]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J., 4, 1844–1854 (2012).
[CrossRef]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Aremenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2, 370–404 (2010).

C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
[CrossRef]

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” in 14th International Conference on Transparent Optical Networks (IEEE, 2012), paper Th.A4.5.

Dell’Olio, F.

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21, 556–564 (2013).
[CrossRef]

F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Theoretical investigation of InP buried ring resonators for new angular velocity sensors,” Opt. Eng. 52, 024601 (2013).
[CrossRef]

C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, “Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Eur. Opt. Soc. Rapid Pub. 8, 13050 (2013).

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J., 4, 1844–1854 (2012).
[CrossRef]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Aremenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon. 2, 370–404 (2010).

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” in 14th International Conference on Transparent Optical Networks (IEEE, 2012), paper Th.A4.5.

Ezekiel, S.

Feng, L.

L. Feng, M. Lei, H. Liu, Y. Zhi, and J. Wang, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Opt. 52, 1668–1675 (2013).
[CrossRef]

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by linear phase modulation method used in resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

Feng, X.

X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).

Green, W.

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

He, Z.

Higashiguchi, M.

Hong, L.

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by linear phase modulation method used in resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

Hotate, K.

Iwatsuki, K.

Jin, Z.

Kaiser, T. J.

T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).

Kompfner, R. K.

H. J. Arditty, H. J. Shaw, M. Chodorow, and R. K. Kompfner, “Re-entrant fiber-optic approach to rotation sensing,” Proc. SPIE 157, 138–148 (1978).

Kyuma, K.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990).
[CrossRef]

Lefevre, H. C.

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech, 2002), pp. 61–63 (in Chinese).

Lei, M.

L. Feng, M. Lei, H. Liu, Y. Zhi, and J. Wang, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Opt. 52, 1668–1675 (2013).
[CrossRef]

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by linear phase modulation method used in resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

Li, M.

Liu, H.

Ma, H.

Ma, Y.

X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).

Mao, H.

Meyer, R. E.

Passaro, V. M. N.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).

Passenberg, W.

Ren, Y.

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25, 198–201 (2013).
[CrossRef]

Schmidt, G.

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

Shaw, H. J.

H. J. Arditty, H. J. Shaw, M. Chodorow, and R. K. Kompfner, “Re-entrant fiber-optic approach to rotation sensing,” Proc. SPIE 157, 138–148 (1978).

Soares, F. M.

Stowe, D. W.

Tabe, K.

Tai, S.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990).
[CrossRef]

Takahashi, M.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990).
[CrossRef]

Vlasov, Y.

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Walsh, J. G.

T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).

Wang, J.

Wang, W.

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25, 198–201 (2013).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Publishing House of Electronics Industry, 2009), pp. 299–304 (in Chinese).

M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Publishing House of Electronics Industry, 2009), pp. 239–242 (in Chinese).

Yu, H.

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by linear phase modulation method used in resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).

Zarinetchi, F.

Zhang, C.

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by linear phase modulation method used in resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

Zhang, X.

X. Zhang and K. Zhou, “Analysis on two-reflection-dots model outside resonator of R-MOG,” Chin. J. Sens. Actuat. 22, 811–815 (2009).

Zhi, Y.

Zhou, K.

X. Zhang and K. Zhou, “Analysis on two-reflection-dots model outside resonator of R-MOG,” Chin. J. Sens. Actuat. 22, 811–815 (2009).

Adv. Opt. Photon. (1)

Appl. Opt. (6)

Chin. J. Lasers (1)

X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).

Chin. J. Sens. Actuat. (1)

X. Zhang and K. Zhou, “Analysis on two-reflection-dots model outside resonator of R-MOG,” Chin. J. Sens. Actuat. 22, 811–815 (2009).

Chin. Phys. Lett. (1)

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by linear phase modulation method used in resonator micro-optic gyro,” Chin. Phys. Lett. 29, 014211 (2012).
[CrossRef]

IEEE Photon. J. (1)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J., 4, 1844–1854 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Ma, W. Wang, Y. Ren, and Z. Jin, “Low-noise low-delay digital signal processor for resonant micro optic gyro,” IEEE Photon. Technol. Lett. 25, 198–201 (2013).
[CrossRef]

IEEE Sens. J. (1)

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

J. Eur. Opt. Soc. Rapid Pub. (1)

C. Ciminelli, C. E. Campanella, F. Dell’Olio, C. M. Campanella, and M. N. Armenise, “Theoretical investigation on the scale factor of a triple ring cavity to be used in frequency sensitive resonant gyroscopes,” J. Eur. Opt. Soc. Rapid Pub. 8, 13050 (2013).

J. Lightwave Technol. (3)

Nat. Photonics (1)

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Opt. Eng. (2)

F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Theoretical investigation of InP buried ring resonators for new angular velocity sensors,” Opt. Eng. 52, 024601 (2013).
[CrossRef]

L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (2)

H. J. Arditty, H. J. Shaw, M. Chodorow, and R. K. Kompfner, “Re-entrant fiber-optic approach to rotation sensing,” Proc. SPIE 157, 138–148 (1978).

T. J. Kaiser, D. Cardarelli, and J. G. Walsh, “Experimental developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).

Other (6)

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2011).

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” in 14th International Conference on Transparent Optical Networks (IEEE, 2012), paper Th.A4.5.

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech, 2002), pp. 61–63 (in Chinese).

M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Publishing House of Electronics Industry, 2009), pp. 239–242 (in Chinese).

http://en.m.wikipedia.org/wiki/Backscatter .

M. Born and E. Wolf, Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Publishing House of Electronics Industry, 2009), pp. 299–304 (in Chinese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Sketch map of a RMOG system. PD, photodetector; SM-ISO, single mode isolator; C, coupler; OWRR, optical waveguide ring resonator; solid line, optical circuit; dash line, electric circuit.

Fig. 2.
Fig. 2.

Simulation and experimental results of backreflection in RMOG. (a) simulation and (b) experiment.

Fig. 3.
Fig. 3.

Sketch map of IPS method. When X=N,2N,3N, the IPS condition is satisfied (blue); otherwise the IPS condition is not satisfied (red).

Fig. 4.
Fig. 4.

Bias and standard deviation of the output data at different numbers of effective sampling points. Solid line, gyro bias test results; dash line, standard deviation of the output data; triangle, for test No. 1; square, for test No. 2.

Fig. 5.
Fig. 5.

Bias stability test of the RMOG prototype.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ICW=I0kCWSk1(1k2)(1αC)1/2R(fCW),
ICCW=I0kCCWS(1k1)k2(1αC)1/2R(fCCW),
R(f)=1ρ(1q)2(1q)2+4qsin2(πfτ),
PD1=ICW+rBk1k2(1αC)1/2R(fCCW)ICCW+2rBk1k2(1αC)1/2R(fCCW)ICWICCWcos(δB),
PD2=ICCW+rAk1k2(1αC)1/2R(fCW)ICW+2rAk1k2(1αC)1/2R(fCW)ICWICCWcos(δA),
δA=δ0A+2·2πλ·nACdAC+2·V(t)Vπ·π,
δB=δ0B+2·2πλ·nBCdBC2·V(t)Vπ·π,
fbfPM=2VppVπ=2M,
R(f=fFWHM23)134ρ.
K=R(f=fFWHM23)=33ρ4fFWHM.
PD1ripple=14I0S(134ρ)3/2rB.
Ωb=nλD·PD1rippleK·ICWnλD(134ρ)1/2833ρfFWHMrB,

Metrics