Abstract

For the first time the effects of arc fusion splicing on the residual stress and refractive index of large-mode-area single-mode ytterbium-doped fibers (YDFs) are investigated using a state-of-the-art three-dimensional concurrent stress-index measurement method. The results, based on a commercially available fiber, describe a host of perturbations that decrease the core/cladding refractive index difference by as much as 1.74×103 over an axial length of many hundreds of wavelengths. Simulations indicate that these perturbations result in an expansion of the mode-field-diameter by 39.6% and, based on the measured sample, result in an extra splice loss of 20.8%. The results of this investigation will be useful in the design and optimization of high-power all-fiber YDF lasers and amplifiers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25, 385–388 (2013).
    [CrossRef]
  2. F. F. Yin, S. G. Yang, H. W. Chen, M. H. Chen, and S. Z. Xie, “Tunable single-longitudinal-mode Ytterbium all fiber laser with saturable-absorber-based auto-tracking filter,” Opt. Commun. 285, 2702–2706 (2012).
    [CrossRef]
  3. N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012).
    [CrossRef]
  4. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  5. K. Lyytikainen, S. T. Huntington, A. L. G. Carter, P. McNamara, S. Fleming, J. Abramczyk, I. Kaplin, and G. Schotz, “Dopant diffusion during optical fibre drawing,” Opt. Express 12, 972–977 (2004).
    [CrossRef]
  6. P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 2: fibers,” Appl. Opt. 26, 1175–1182 (1987).
    [CrossRef]
  7. I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008).
    [CrossRef]
  8. W. Shin, M. J. Han, U. C. Paek, D. Y. Kim, and K. Oh, “Longitudinal distribution of stress along the splice between dissimilar optical fibers,” in Optical Fiber Communication Conference (OFC), Los Angeles, CA, 23–27 February2004 (Institute of Electrical and Electronics Engineers Inc., 2004), pp. 19–21.
  9. J. Luo, “Modeling dissimilar optical fiber splices with substantial diffusion,” J. Lightwave Technol. 25, 3575–3579 (2007).
    [CrossRef]
  10. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
    [CrossRef]
  11. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
    [CrossRef]
  12. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, “Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers,” Appl. Opt. 38, 1086–1095 (1999).
    [CrossRef]
  13. Y. Park, T. J. Ahn, Y. H. Kim, W. T. Han, U. C. Paek, and D. Y. Kim, “Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber,” Appl. Opt. 41, 21–26 (2002).
    [CrossRef]
  14. C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265, 29–32 (2006).
    [CrossRef]
  15. M. R. Hutsel, R. Ingle, and T. K. Gaylord, “Accurate cross-sectional stress profiling of optical fibers,” Appl. Opt. 48, 4985–4995 (2009).
    [CrossRef]
  16. N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008).
    [CrossRef]
  17. M. R. Hutsel and T. K. Gaylord, “Concurrent three-dimensional characterization of the refractive-index and residual-stress distributions in optical fibers,” Appl. Opt. 51, 5442–5452 (2012).
    [CrossRef]
  18. T. Feng, M. H. Jenkins, F. Yan, and T. K. Gaylord, “Joint residual stress/refractive index characterization of large-mode-area erbium-doped fibers,” J. Lightwave Technol. 31, 2426–2433 (2013).
    [CrossRef]
  19. nLight corporation, Vancouver, WA 98665 USA. http://www.nlight.net .
  20. S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49, 1054–1059 (2011).
    [CrossRef]
  21. P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
    [CrossRef]
  22. J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-TDM,” IEEE Photon. Technol. Lett. 8, 236–238 (1996).
    [CrossRef]
  23. A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005), pp. 115–117.

2013 (3)

Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25, 385–388 (2013).
[CrossRef]

T. Feng, M. H. Jenkins, F. Yan, and T. K. Gaylord, “Joint residual stress/refractive index characterization of large-mode-area erbium-doped fibers,” J. Lightwave Technol. 31, 2426–2433 (2013).
[CrossRef]

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[CrossRef]

2012 (3)

F. F. Yin, S. G. Yang, H. W. Chen, M. H. Chen, and S. Z. Xie, “Tunable single-longitudinal-mode Ytterbium all fiber laser with saturable-absorber-based auto-tracking filter,” Opt. Commun. 285, 2702–2706 (2012).
[CrossRef]

N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012).
[CrossRef]

M. R. Hutsel and T. K. Gaylord, “Concurrent three-dimensional characterization of the refractive-index and residual-stress distributions in optical fibers,” Appl. Opt. 51, 5442–5452 (2012).
[CrossRef]

2011 (1)

S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49, 1054–1059 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (2)

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008).
[CrossRef]

I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008).
[CrossRef]

2007 (1)

2006 (1)

C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265, 29–32 (2006).
[CrossRef]

2004 (3)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

K. Lyytikainen, S. T. Huntington, A. L. G. Carter, P. McNamara, S. Fleming, J. Abramczyk, I. Kaplin, and G. Schotz, “Dopant diffusion during optical fibre drawing,” Opt. Express 12, 972–977 (2004).
[CrossRef]

2002 (1)

1999 (1)

1996 (1)

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-TDM,” IEEE Photon. Technol. Lett. 8, 236–238 (1996).
[CrossRef]

1987 (1)

Abramczyk, J.

Ahmad, H.

N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012).
[CrossRef]

Ahn, T. J.

Akimoto, Y.

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-TDM,” IEEE Photon. Technol. Lett. 8, 236–238 (1996).
[CrossRef]

Bachmann, P. K.

Bhadra, S. K.

N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012).
[CrossRef]

Carter, A. L. G.

Chen, H. W.

F. F. Yin, S. G. Yang, H. W. Chen, M. H. Chen, and S. Z. Xie, “Tunable single-longitudinal-mode Ytterbium all fiber laser with saturable-absorber-based auto-tracking filter,” Opt. Commun. 285, 2702–2706 (2012).
[CrossRef]

Chen, M. H.

F. F. Yin, S. G. Yang, H. W. Chen, M. H. Chen, and S. Z. Xie, “Tunable single-longitudinal-mode Ytterbium all fiber laser with saturable-absorber-based auto-tracking filter,” Opt. Commun. 285, 2702–2706 (2012).
[CrossRef]

Chui, P. C.

Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25, 385–388 (2013).
[CrossRef]

Clarkson, W. A.

Dachevski, A. I.

C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265, 29–32 (2006).
[CrossRef]

Damanhuri, S. S. A.

N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012).
[CrossRef]

DiGiovanni, D. J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

DiMarcello, F. V.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Dragomir, N. M.

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008).
[CrossRef]

Feced, R.

Feng, T.

Fleming, J. W.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Fleming, S.

Gaylord, T. K.

Goh, X. M.

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008).
[CrossRef]

Gong, M.

S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49, 1054–1059 (2011).
[CrossRef]

Gong, M. L.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[CrossRef]

Han, M. J.

W. Shin, M. J. Han, U. C. Paek, D. Y. Kim, and K. Oh, “Longitudinal distribution of stress along the splice between dissimilar optical fibers,” in Optical Fiber Communication Conference (OFC), Los Angeles, CA, 23–27 February2004 (Institute of Electrical and Electronics Engineers Inc., 2004), pp. 19–21.

Han, W. T.

Handerek, V. A.

Hao, J. P.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[CrossRef]

Harun, S. W.

N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012).
[CrossRef]

Hermann, W.

Huntington, S. T.

Hutsel, M. R.

Ingle, R.

Ismail, M. A.

N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012).
[CrossRef]

Jasapara, J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Jenkins, M. H.

Kanellopoulos, S. E.

Kaplin, I.

Kim, B. H.

I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008).
[CrossRef]

Kim, D. Y.

I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008).
[CrossRef]

Y. Park, T. J. Ahn, Y. H. Kim, W. T. Han, U. C. Paek, and D. Y. Kim, “Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber,” Appl. Opt. 41, 21–26 (2002).
[CrossRef]

W. Shin, M. J. Han, U. C. Paek, D. Y. Kim, and K. Oh, “Longitudinal distribution of stress along the splice between dissimilar optical fibers,” in Optical Fiber Communication Conference (OFC), Los Angeles, CA, 23–27 February2004 (Institute of Electrical and Electronics Engineers Inc., 2004), pp. 19–21.

Kim, Y. H.

Lines, M. E.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Luo, J.

Lyytikainen, K.

McNamara, P.

Monberg, E. M.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Montarou, C. C.

C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265, 29–32 (2006).
[CrossRef]

Nakano, H.

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-TDM,” IEEE Photon. Technol. Lett. 8, 236–238 (1996).
[CrossRef]

Nibe, M.

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-TDM,” IEEE Photon. Technol. Lett. 8, 236–238 (1996).
[CrossRef]

Nilsson, J.

Oh, K.

W. Shin, M. J. Han, U. C. Paek, D. Y. Kim, and K. Oh, “Longitudinal distribution of stress along the splice between dissimilar optical fibers,” in Optical Fiber Communication Conference (OFC), Los Angeles, CA, 23–27 February2004 (Institute of Electrical and Electronics Engineers Inc., 2004), pp. 19–21.

Paek, U. C.

Y. Park, T. J. Ahn, Y. H. Kim, W. T. Han, U. C. Paek, and D. Y. Kim, “Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber,” Appl. Opt. 41, 21–26 (2002).
[CrossRef]

W. Shin, M. J. Han, U. C. Paek, D. Y. Kim, and K. Oh, “Longitudinal distribution of stress along the splice between dissimilar optical fibers,” in Optical Fiber Communication Conference (OFC), Los Angeles, CA, 23–27 February2004 (Institute of Electrical and Electronics Engineers Inc., 2004), pp. 19–21.

Pal, M.

N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012).
[CrossRef]

Park, Y.

Paul, M. C.

N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012).
[CrossRef]

Raine, K. W.

Reed, W. A.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Richardson, D. J.

Roberts, A.

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008).
[CrossRef]

Schotz, G.

Shahabuddin, N. S.

N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012).
[CrossRef]

Shin, I. H.

I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008).
[CrossRef]

Shin, W.

W. Shin, M. J. Han, U. C. Paek, D. Y. Kim, and K. Oh, “Longitudinal distribution of stress along the splice between dissimilar optical fibers,” in Optical Fiber Communication Conference (OFC), Los Angeles, CA, 23–27 February2004 (Institute of Electrical and Electronics Engineers Inc., 2004), pp. 19–21.

Veetil, S. P.

I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008).
[CrossRef]

Wang, Y. P.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[CrossRef]

Wehr, H.

Wiechert, D. U.

Wisk, P.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Wong, K. K. Y.

Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25, 385–388 (2013).
[CrossRef]

Xiao, Q. R.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[CrossRef]

Xie, S. Z.

F. F. Yin, S. G. Yang, H. W. Chen, M. H. Chen, and S. Z. Xie, “Tunable single-longitudinal-mode Ytterbium all fiber laser with saturable-absorber-based auto-tracking filter,” Opt. Commun. 285, 2702–2706 (2012).
[CrossRef]

Yablon, A. D.

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005), pp. 115–117.

Yamauchi, J.

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-TDM,” IEEE Photon. Technol. Lett. 8, 236–238 (1996).
[CrossRef]

Yan, F.

Yan, M. F.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

Yan, P.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[CrossRef]

S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49, 1054–1059 (2011).
[CrossRef]

Yang, S. G.

F. F. Yin, S. G. Yang, H. W. Chen, M. H. Chen, and S. Z. Xie, “Tunable single-longitudinal-mode Ytterbium all fiber laser with saturable-absorber-based auto-tracking filter,” Opt. Commun. 285, 2702–2706 (2012).
[CrossRef]

Yin, F. F.

F. F. Yin, S. G. Yang, H. W. Chen, M. H. Chen, and S. Z. Xie, “Tunable single-longitudinal-mode Ytterbium all fiber laser with saturable-absorber-based auto-tracking filter,” Opt. Commun. 285, 2702–2706 (2012).
[CrossRef]

Yin, S.

S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49, 1054–1059 (2011).
[CrossRef]

Zhou, Y.

Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25, 385–388 (2013).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25, 385–388 (2013).
[CrossRef]

J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-TDM,” IEEE Photon. Technol. Lett. 8, 236–238 (1996).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Phys. (2)

N. S. Shahabuddin, M. A. Ismail, M. C. Paul, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. Pal, and S. K. Bhadra, “Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference,” Laser Phys. 22, 252–255 (2012).
[CrossRef]

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[CrossRef]

Microsc. Res. Tech. (1)

N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008).
[CrossRef]

Opt. Commun. (3)

C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265, 29–32 (2006).
[CrossRef]

I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008).
[CrossRef]

F. F. Yin, S. G. Yang, H. W. Chen, M. H. Chen, and S. Z. Xie, “Tunable single-longitudinal-mode Ytterbium all fiber laser with saturable-absorber-based auto-tracking filter,” Opt. Commun. 285, 2702–2706 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

S. Yin, P. Yan, and M. Gong, “Influence of fusion splice on high power ytterbium-doped fiber laser with master oscillator multi-stage power amplifiers structure,” Opt. Lasers Eng. 49, 1054–1059 (2011).
[CrossRef]

Other (3)

A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005), pp. 115–117.

W. Shin, M. J. Han, U. C. Paek, D. Y. Kim, and K. Oh, “Longitudinal distribution of stress along the splice between dissimilar optical fibers,” in Optical Fiber Communication Conference (OFC), Los Angeles, CA, 23–27 February2004 (Institute of Electrical and Electronics Engineers Inc., 2004), pp. 19–21.

nLight corporation, Vancouver, WA 98665 USA. http://www.nlight.net .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Cross section of LIEKKI Yb1200-10/125-DC as observed in a bright-field microscope.

Fig. 2.
Fig. 2.

(a) Measured RS distribution along the LIEKKI Yb1200-10/125-DC (left) and the SMF-28 (right) after arc fusion splicing. The inserted figure (top) shows the mean axial stress near the splicing point. (b) RI profiles at indicated positions along the transition region from the splicing point.

Fig. 3.
Fig. 3.

Cross-sectional RS distribution (reconstructed using all projection angles) in LIEKKI Yb1200-10/125-DC 20 μm from the splicing point.

Fig. 4.
Fig. 4.

Calculated change of radial RI Δnr induced by the RS change along the fusion splice between the LIEKKI Yb1200-10/125-DC (left) and the SMF-28 (right).

Fig. 5.
Fig. 5.

(a) Measured RI distribution along the LIEKKI Yb1200-10/125-DC (left) and the SMF-28 (right) after arc fusion splicing. (b) RI profiles at indicated positions along the transition region from the splicing point.

Fig. 6.
Fig. 6.

Cross-sectional RI distribution (reconstructed using all projection angles) in LIEKKI Yb1200-10/125-DC 20 μm from the splicing point.

Fig. 7.
Fig. 7.

FD-BPM simulation of a fusion splice between a LIEKKI Yb1200-10/125-DC (left) and a SMF-28 (right). (a) Using the measured RI data and (b) using the ideal RI data without any perturbations. The splicing point is at z=0mm. A fundamental guided mode of the LIEKKI Yb1200-10/125-DC core is used as the input at z=1.5mm. (c) Electric field amplitudes from (a) at the indicated positions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σzm=0aσzrdr/0ardr.

Metrics