Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fringe-projection profilometry based on two-dimensional empirical mode decomposition

Not Accessible

Your library or personal account may give you access

Abstract

In 3D shape measurement, because deformed fringes often contain low-frequency information degraded with random noise and background intensity information, a new fringe-projection profilometry is proposed based on 2D empirical mode decomposition (2D-EMD). The fringe pattern is first decomposed into numbers of intrinsic mode functions by 2D-EMD. Because the method has partial noise reduction, the background components can be removed to obtain the fundamental components needed to perform Hilbert transformation to retrieve the phase information. The 2D-EMD can effectively extract the modulation phase of a single direction fringe and an inclined fringe pattern because it is a full 2D analysis method and considers the relationship between adjacent lines of a fringe patterns. In addition, as the method does not add noise repeatedly, as does ensemble EMD, the data processing time is shortened. Computer simulations and experiments prove the feasibility of this method.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition

Sikun Li, Xianyu Su, Wenjing Chen, and Liqun Xiang
J. Opt. Soc. Am. A 26(5) 1195-1201 (2009)

Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns

Xiang Zhou, Adrian Gh. Podoleanu, Zhuangqun Yang, Tao Yang, and Hong Zhao
Opt. Express 20(22) 24247-24262 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.