Abstract

Most phase unwrapping algorithms shift the 2π phase jump pixels to obtain the unwrapped phases, while most filtering algorithms remove the noisy pixels to avoid the fault of unwrapped phases. Thus, finding the positions of phase jump pixels and noisy pixels is important. This study proposed a modified detection scheme developed from the originally published noise and phase jump detection scheme [Opt. Express 19, 3086 (2011)]. The original detection scheme finds the noise positions and phase jump positions, and then marks these pixels in two maps, namely, the noise map and the phase jump map. One 2π phase jump contains a 2π-high position and a 0-low position. However, the original detection scheme usually finds a 2π-high position and misses a corresponding 0-low position, or usually finds a 0-low position and misses a corresponding 2π-high position. Moreover, the original detection scheme produces detection errors, containing the repeated pixels of phase jump or the wrong pixels generated by noise. Fortunately, the proposed modified detection scheme can find both the 2π-high position and the corresponding 0-low position. Moreover, the detection errors are also reduced by the proposed modified detection scheme. The robustness of the modified detection scheme is demonstrated both numerically and experimentally.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription