Abstract

In nature, some beetles can display bicolor on their elytra. In order to explore the bicolor mechanism, we experimentally studied the optical and structural properties of the Carabus lafossei beetle. We found a multilayer structure in the cuticle of the beetle. Due to the different multilayer thicknesses in different areas, the beetle displayed bicolor. Here, we provide another approach to fabricate bicolor by depositing the same multilayer stack on a substrate with different reflectances at different areas. In this paper, the substrate with different reflectances is achieved by prefabricating sculpted hexagons (SU-8) on a silicon substrate. By coating a (ZnS/MgF2)3.5 multilayer, the sculpted structure displays green color at the ridges (SU-8/silicon area) and yellow color at the basins (silicon area).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. P. Biró and J. P. Vigneron, “Photonic nano architectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5.1, 27–51 (2011).
  2. H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt. 30, 3492–3500 (1991).
    [CrossRef]
  3. M. Xu, A. E. Seago, and T. D. Sutherland, “Dual structural color mechanisms in a Scarab beetle,” J. Morph. 271, 1300–1305 (2010).
    [CrossRef]
  4. C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,” Opt. Express 19, 11355–11364 (2011).
    [CrossRef]
  5. P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colors in biological systems,” J. R. Soc. Interface 6, S133–S148 (2009).
    [CrossRef]
  6. Y. Y. Diao and X. Y. Liu, “Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies,” Opt. Express 19, 9232–9241 (2011).
    [CrossRef]
  7. K. Michielsen, H. Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the green hairstreak butterfly Callophrys rubi,” J. R. Soc. Interface 7, 765–771 (2010).
    [CrossRef]
  8. S. M. Luke, B. T. Hallam, and P. Vukusic, “Structural optimization for broadband scattering in several ultra-thin white beetle scales,” Appl. Opt. 49, 4246–4254 (2010).
    [CrossRef]
  9. S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
    [CrossRef]
  10. J. P. Vigneron and P. Simonis, “Natural photonic crystals,” Physica B 407, 4032–4036 (2012).
    [CrossRef]
  11. S. Yoshioka, S. Kinoshita, and H. Iida, “Phase-adjusting layers in the multilayer reflector of a Jewel beetle,” J. Phys. Soc. Jpn. 81, 054801 (2012).
    [CrossRef]
  12. P. Vukusic, “Natural designs for manipulating the appearance of surfaces,” Ophthalmic Physiolog. Opt. 30, 435–445 (2010).
    [CrossRef]
  13. D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese Jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. B 366, 709–723 (2011).
    [CrossRef]
  14. J. P. Vigneron, J. F. Colomer, and N. Vigneron, “Natural layer by layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
    [CrossRef]
  15. F. Liu, H. Yin, and B. Dong, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E 77, 012901 (2008).
    [CrossRef]
  16. S. Yoshioka, B. Matsuhana, S. Tanaka, Y. Inouye, N. Oshima, and S. Kinoshita, “Mechanism of variable structural color in the neon tetra: quantitative evaluation of the Venetian blind model,” J. R. Soc. Interface 8, 56–66 (2010).
    [CrossRef]
  17. S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E 83, 051917 (2011).
    [CrossRef]
  18. M. R. Jorgensen and M. H. Bartl, “Biotemplating routes to three-dimensional photonic crystals,” J. Mater. Chem. 21, 10583 (2011).
    [CrossRef]
  19. J. F. Colomer, P. Simonis, and A. Bay, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator (Cerambycidae),” Phys. Rev. E 85, 011907 (2012).
    [CrossRef]
  20. P. Vukusic, R. Sambles, and C. Lawrence, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt. 40, 1116–1125 (2001).
    [CrossRef]
  21. J. P. Vigneron, M. Rassart, and C. Vandenbem, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E 73, 04195 (2006).
    [CrossRef]
  22. A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2, 347–353 (2007).
    [CrossRef]
  23. M. Kolle, P. M. S. Cunha, and M. R. J. Scherer, “Mimicking the colorful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
    [CrossRef]
  24. H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19, 24061–24066 (2011).
    [CrossRef]
  25. D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PloS One 7, e49743 (2012).
    [CrossRef]

2012 (4)

J. P. Vigneron and P. Simonis, “Natural photonic crystals,” Physica B 407, 4032–4036 (2012).
[CrossRef]

S. Yoshioka, S. Kinoshita, and H. Iida, “Phase-adjusting layers in the multilayer reflector of a Jewel beetle,” J. Phys. Soc. Jpn. 81, 054801 (2012).
[CrossRef]

J. F. Colomer, P. Simonis, and A. Bay, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator (Cerambycidae),” Phys. Rev. E 85, 011907 (2012).
[CrossRef]

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PloS One 7, e49743 (2012).
[CrossRef]

2011 (7)

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19, 24061–24066 (2011).
[CrossRef]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese Jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. B 366, 709–723 (2011).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E 83, 051917 (2011).
[CrossRef]

M. R. Jorgensen and M. H. Bartl, “Biotemplating routes to three-dimensional photonic crystals,” J. Mater. Chem. 21, 10583 (2011).
[CrossRef]

L. P. Biró and J. P. Vigneron, “Photonic nano architectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5.1, 27–51 (2011).

C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,” Opt. Express 19, 11355–11364 (2011).
[CrossRef]

Y. Y. Diao and X. Y. Liu, “Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies,” Opt. Express 19, 9232–9241 (2011).
[CrossRef]

2010 (6)

K. Michielsen, H. Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the green hairstreak butterfly Callophrys rubi,” J. R. Soc. Interface 7, 765–771 (2010).
[CrossRef]

S. M. Luke, B. T. Hallam, and P. Vukusic, “Structural optimization for broadband scattering in several ultra-thin white beetle scales,” Appl. Opt. 49, 4246–4254 (2010).
[CrossRef]

M. Xu, A. E. Seago, and T. D. Sutherland, “Dual structural color mechanisms in a Scarab beetle,” J. Morph. 271, 1300–1305 (2010).
[CrossRef]

P. Vukusic, “Natural designs for manipulating the appearance of surfaces,” Ophthalmic Physiolog. Opt. 30, 435–445 (2010).
[CrossRef]

M. Kolle, P. M. S. Cunha, and M. R. J. Scherer, “Mimicking the colorful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef]

S. Yoshioka, B. Matsuhana, S. Tanaka, Y. Inouye, N. Oshima, and S. Kinoshita, “Mechanism of variable structural color in the neon tetra: quantitative evaluation of the Venetian blind model,” J. R. Soc. Interface 8, 56–66 (2010).
[CrossRef]

2009 (2)

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[CrossRef]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colors in biological systems,” J. R. Soc. Interface 6, S133–S148 (2009).
[CrossRef]

2008 (1)

F. Liu, H. Yin, and B. Dong, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E 77, 012901 (2008).
[CrossRef]

2007 (1)

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2, 347–353 (2007).
[CrossRef]

2006 (1)

J. P. Vigneron, M. Rassart, and C. Vandenbem, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E 73, 04195 (2006).
[CrossRef]

2005 (1)

J. P. Vigneron, J. F. Colomer, and N. Vigneron, “Natural layer by layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

2001 (1)

1991 (1)

Bartl, M. H.

M. R. Jorgensen and M. H. Bartl, “Biotemplating routes to three-dimensional photonic crystals,” J. Mater. Chem. 21, 10583 (2011).
[CrossRef]

Bay, A.

J. F. Colomer, P. Simonis, and A. Bay, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator (Cerambycidae),” Phys. Rev. E 85, 011907 (2012).
[CrossRef]

Biró, L. P.

L. P. Biró and J. P. Vigneron, “Photonic nano architectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5.1, 27–51 (2011).

Colomer, J. F.

J. F. Colomer, P. Simonis, and A. Bay, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator (Cerambycidae),” Phys. Rev. E 85, 011907 (2012).
[CrossRef]

J. P. Vigneron, J. F. Colomer, and N. Vigneron, “Natural layer by layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Cunha, P. M. S.

M. Kolle, P. M. S. Cunha, and M. R. J. Scherer, “Mimicking the colorful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef]

De Raedt, H. A.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PloS One 7, e49743 (2012).
[CrossRef]

Diao, Y. Y.

Dong, B.

F. Liu, H. Yin, and B. Dong, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E 77, 012901 (2008).
[CrossRef]

Doucet, S. M.

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[CrossRef]

Ghiradella, H.

Hallam, B. T.

Hariyama, T.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PloS One 7, e49743 (2012).
[CrossRef]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese Jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. B 366, 709–723 (2011).
[CrossRef]

Iida, H.

S. Yoshioka, S. Kinoshita, and H. Iida, “Phase-adjusting layers in the multilayer reflector of a Jewel beetle,” J. Phys. Soc. Jpn. 81, 054801 (2012).
[CrossRef]

Inouye, Y.

S. Yoshioka, B. Matsuhana, S. Tanaka, Y. Inouye, N. Oshima, and S. Kinoshita, “Mechanism of variable structural color in the neon tetra: quantitative evaluation of the Venetian blind model,” J. R. Soc. Interface 8, 56–66 (2010).
[CrossRef]

Jorgensen, M. R.

M. R. Jorgensen and M. H. Bartl, “Biotemplating routes to three-dimensional photonic crystals,” J. Mater. Chem. 21, 10583 (2011).
[CrossRef]

Kinoshita, S.

S. Yoshioka, S. Kinoshita, and H. Iida, “Phase-adjusting layers in the multilayer reflector of a Jewel beetle,” J. Phys. Soc. Jpn. 81, 054801 (2012).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E 83, 051917 (2011).
[CrossRef]

S. Yoshioka, B. Matsuhana, S. Tanaka, Y. Inouye, N. Oshima, and S. Kinoshita, “Mechanism of variable structural color in the neon tetra: quantitative evaluation of the Venetian blind model,” J. R. Soc. Interface 8, 56–66 (2010).
[CrossRef]

Kolle, M.

M. Kolle, P. M. S. Cunha, and M. R. J. Scherer, “Mimicking the colorful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef]

Lawrence, C.

Leertouwer, H. L.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PloS One 7, e49743 (2012).
[CrossRef]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19, 24061–24066 (2011).
[CrossRef]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese Jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. B 366, 709–723 (2011).
[CrossRef]

Liu, F.

F. Liu, H. Yin, and B. Dong, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E 77, 012901 (2008).
[CrossRef]

Liu, X. Y.

Luke, S. M.

Matsuhana, B.

S. Yoshioka, B. Matsuhana, S. Tanaka, Y. Inouye, N. Oshima, and S. Kinoshita, “Mechanism of variable structural color in the neon tetra: quantitative evaluation of the Venetian blind model,” J. R. Soc. Interface 8, 56–66 (2010).
[CrossRef]

Meadows, M. G.

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[CrossRef]

Michielsen, K.

K. Michielsen, H. Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the green hairstreak butterfly Callophrys rubi,” J. R. Soc. Interface 7, 765–771 (2010).
[CrossRef]

Oshima, N.

S. Yoshioka, B. Matsuhana, S. Tanaka, Y. Inouye, N. Oshima, and S. Kinoshita, “Mechanism of variable structural color in the neon tetra: quantitative evaluation of the Venetian blind model,” J. R. Soc. Interface 8, 56–66 (2010).
[CrossRef]

Parker, A. R.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2, 347–353 (2007).
[CrossRef]

Pouya, C.

Raedt, H.

K. Michielsen, H. Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the green hairstreak butterfly Callophrys rubi,” J. R. Soc. Interface 7, 765–771 (2010).
[CrossRef]

Rassart, M.

J. P. Vigneron, M. Rassart, and C. Vandenbem, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E 73, 04195 (2006).
[CrossRef]

Sambles, R.

Scherer, M. R. J.

M. Kolle, P. M. S. Cunha, and M. R. J. Scherer, “Mimicking the colorful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef]

Seago, A. E.

M. Xu, A. E. Seago, and T. D. Sutherland, “Dual structural color mechanisms in a Scarab beetle,” J. Morph. 271, 1300–1305 (2010).
[CrossRef]

Simonis, P.

J. P. Vigneron and P. Simonis, “Natural photonic crystals,” Physica B 407, 4032–4036 (2012).
[CrossRef]

J. F. Colomer, P. Simonis, and A. Bay, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator (Cerambycidae),” Phys. Rev. E 85, 011907 (2012).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PloS One 7, e49743 (2012).
[CrossRef]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19, 24061–24066 (2011).
[CrossRef]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese Jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. B 366, 709–723 (2011).
[CrossRef]

C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,” Opt. Express 19, 11355–11364 (2011).
[CrossRef]

K. Michielsen, H. Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the green hairstreak butterfly Callophrys rubi,” J. R. Soc. Interface 7, 765–771 (2010).
[CrossRef]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colors in biological systems,” J. R. Soc. Interface 6, S133–S148 (2009).
[CrossRef]

Sutherland, T. D.

M. Xu, A. E. Seago, and T. D. Sutherland, “Dual structural color mechanisms in a Scarab beetle,” J. Morph. 271, 1300–1305 (2010).
[CrossRef]

Tanaka, S.

S. Yoshioka, B. Matsuhana, S. Tanaka, Y. Inouye, N. Oshima, and S. Kinoshita, “Mechanism of variable structural color in the neon tetra: quantitative evaluation of the Venetian blind model,” J. R. Soc. Interface 8, 56–66 (2010).
[CrossRef]

Townley, H. E.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2, 347–353 (2007).
[CrossRef]

Vandenbem, C.

J. P. Vigneron, M. Rassart, and C. Vandenbem, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E 73, 04195 (2006).
[CrossRef]

Vigneron, J. P.

J. P. Vigneron and P. Simonis, “Natural photonic crystals,” Physica B 407, 4032–4036 (2012).
[CrossRef]

L. P. Biró and J. P. Vigneron, “Photonic nano architectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5.1, 27–51 (2011).

J. P. Vigneron, M. Rassart, and C. Vandenbem, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E 73, 04195 (2006).
[CrossRef]

J. P. Vigneron, J. F. Colomer, and N. Vigneron, “Natural layer by layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Vigneron, N.

J. P. Vigneron, J. F. Colomer, and N. Vigneron, “Natural layer by layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Vukusic, P.

Wilts, B. D.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PloS One 7, e49743 (2012).
[CrossRef]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19, 24061–24066 (2011).
[CrossRef]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese Jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. B 366, 709–723 (2011).
[CrossRef]

Xu, M.

M. Xu, A. E. Seago, and T. D. Sutherland, “Dual structural color mechanisms in a Scarab beetle,” J. Morph. 271, 1300–1305 (2010).
[CrossRef]

Yin, H.

F. Liu, H. Yin, and B. Dong, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E 77, 012901 (2008).
[CrossRef]

Yoshioka, S.

S. Yoshioka, S. Kinoshita, and H. Iida, “Phase-adjusting layers in the multilayer reflector of a Jewel beetle,” J. Phys. Soc. Jpn. 81, 054801 (2012).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E 83, 051917 (2011).
[CrossRef]

S. Yoshioka, B. Matsuhana, S. Tanaka, Y. Inouye, N. Oshima, and S. Kinoshita, “Mechanism of variable structural color in the neon tetra: quantitative evaluation of the Venetian blind model,” J. R. Soc. Interface 8, 56–66 (2010).
[CrossRef]

Appl. Opt. (3)

J. Mater. Chem. (1)

M. R. Jorgensen and M. H. Bartl, “Biotemplating routes to three-dimensional photonic crystals,” J. Mater. Chem. 21, 10583 (2011).
[CrossRef]

J. Morph. (1)

M. Xu, A. E. Seago, and T. D. Sutherland, “Dual structural color mechanisms in a Scarab beetle,” J. Morph. 271, 1300–1305 (2010).
[CrossRef]

J. Phys. Soc. Jpn. (1)

S. Yoshioka, S. Kinoshita, and H. Iida, “Phase-adjusting layers in the multilayer reflector of a Jewel beetle,” J. Phys. Soc. Jpn. 81, 054801 (2012).
[CrossRef]

J. R. Soc. Interface (4)

S. Yoshioka, B. Matsuhana, S. Tanaka, Y. Inouye, N. Oshima, and S. Kinoshita, “Mechanism of variable structural color in the neon tetra: quantitative evaluation of the Venetian blind model,” J. R. Soc. Interface 8, 56–66 (2010).
[CrossRef]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colors in biological systems,” J. R. Soc. Interface 6, S133–S148 (2009).
[CrossRef]

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[CrossRef]

K. Michielsen, H. Raedt, and D. G. Stavenga, “Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the green hairstreak butterfly Callophrys rubi,” J. R. Soc. Interface 7, 765–771 (2010).
[CrossRef]

Laser Photon. Rev. (1)

L. P. Biró and J. P. Vigneron, “Photonic nano architectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon. Rev. 5.1, 27–51 (2011).

Nat. Nanotechnol. (2)

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol. 2, 347–353 (2007).
[CrossRef]

M. Kolle, P. M. S. Cunha, and M. R. J. Scherer, “Mimicking the colorful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol. 5, 511–515 (2010).
[CrossRef]

Ophthalmic Physiolog. Opt. (1)

P. Vukusic, “Natural designs for manipulating the appearance of surfaces,” Ophthalmic Physiolog. Opt. 30, 435–445 (2010).
[CrossRef]

Opt. Express (3)

Philos. Trans. R. Soc. B (1)

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese Jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. B 366, 709–723 (2011).
[CrossRef]

Phys. Rev. E (5)

J. P. Vigneron, J. F. Colomer, and N. Vigneron, “Natural layer by layer photonic structure in the squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904 (2005).
[CrossRef]

F. Liu, H. Yin, and B. Dong, “Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E 77, 012901 (2008).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E 83, 051917 (2011).
[CrossRef]

J. F. Colomer, P. Simonis, and A. Bay, “Photonic polycrystal in the greenish-white scales of the African longhorn beetle Prosopocera lactator (Cerambycidae),” Phys. Rev. E 85, 011907 (2012).
[CrossRef]

J. P. Vigneron, M. Rassart, and C. Vandenbem, “Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material,” Phys. Rev. E 73, 04195 (2006).
[CrossRef]

Physica B (1)

J. P. Vigneron and P. Simonis, “Natural photonic crystals,” Physica B 407, 4032–4036 (2012).
[CrossRef]

PloS One (1)

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PloS One 7, e49743 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a), (b) Photos of Carabus lafossei; (c) optical image of body under 100× magnification; (d) under 500× magnification. Scale bar: (a), (b) 1 cm; (c) 200 μm; (d) 20 μm.

Fig. 2.
Fig. 2.

(a) Reflectance spectra of Carabus lafossei, with incident angles of 10°, 20°, 30°, and 40°, and the same reflection angles (θ-θ); (b) modeling results of reflectance spectra of Carabus lafossei.

Fig. 3.
Fig. 3.

(a) SEM image of Carabus lafossei; (b) TEM image of the concavities; (c) EM image of the concavity’s ridge; (d) TEM image of the concavity’s basin. Scale bar: (a) 50 μm; (b) 2 μm; (c) 2 μm; (d) 1 μm.

Fig. 4.
Fig. 4.

(a) Photo of bicolor sample; (b), (c) cross section of bionic sample. Scale bar: (a) 10 μm; (b) 3 μm; (c) 1 μm.

Fig. 5.
Fig. 5.

Reflectance spectra of different substrates with coated multilayer. The silicon substrate is the black curve and the SU-8/Si substrate is the blue curve. The inset is the optical image of the bicolor of different substrates with multilayers. Scale bar is 200 μm.

Fig. 6.
Fig. 6.

Reflectance spectra of four different substrates with coated multilayer calculated by the T-matrix method. The refractive indices of the four substrates are 1.38, 1.6, 2.0, and 3.4. The 1D multilayer is (ZnS/MgF2)3.5, and the thicknesses of the ZnS and MgF2 layers are 59.6 and 101.4 nm, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ0=2(n1d1cosθ1+n2d2cosθ2),
n1sinθ1=n2sinθ2,
d=λ1·λ22n(λ1λ2),
[BC]={j=1n[cosδjisinδjηjiηjsinδjcosδj]}(1ηs),
R=(η0BCη0B+C)(η0BCη0B+C)*,

Metrics