Abstract

A novel optical electric-field sensor is proposed and demonstrated in experiment by use of a single beta barium borate (β-BaB2O4, BBO) crystal. The optical sensing unit is only composed of one BBO crystal and two polarizers. An optical phase bias of 0.5π is provided by using natural birefringence in the BBO crystal itself. A small angle (e.g., 0.6°) between the sensing light beam and principal axis of the crystal is required in order to produce the above optical bias. Thus the BBO crystal is used as the electric-field-sensing element and quarter waveplate. The ac electric field in the range of (1.4703.2)kV/m has been measured with measurement sensitivity of 1.39mV/(kV/m) and nonlinear error of 0.6%. Compared with lithium niobate crystal used as an electric-field sensor, main advantages of the BBO crystal include higher measurement sensitivity, compact configuration, and no ferroelectric ringing effect.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Lee, N. W. Kang, J. H. Choi, J. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors 11, 806–824 (2011).
    [CrossRef]
  2. N. A. F. Jaeger and F. Rahmatian, “Bias of integrated optics Pockels cell high-voltage sensors,” Proc. SPIE 2072, 87–95 (1994).
    [CrossRef]
  3. L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20, 4032–4038 (2012).
    [CrossRef]
  4. W. K. Kuo and D. T. Tang, “Three-dimensional electric-field mapping system using crystal principal axes electro-optic rotation,” Rev. Sci. Instrum. 76, 055111 (2005).
    [CrossRef]
  5. R. Zeng, Y. Zhang, W. Chen, and B. Zhang, “Measurement of electric field distribution along composite insulators by integrated optical electric field sensor,” IEEE Trans. Dielectr. Electr. Insul. 15, 302–310 (2008).
    [CrossRef]
  6. S. Chadderdon, R. Gibson, R. H. Selfridge, S. M. Schultz, W. C. Wang, R. Forber, J. Luo, and A. K. Y. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
    [CrossRef]
  7. F. Cecelja and W. Balachandran, “Compensation of environmental effects in bulk optical sensors,” IEEE Trans. Instrum. Meas. 51, 866–869 (2002).
    [CrossRef]
  8. L. Duvillaret, S. Rialland, and J. L. Coutaz, “Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation,” J. Opt. Soc. Am. B 19, 2704–2715 (2002).
    [CrossRef]
  9. S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensors,” Chin. J. Lasers B 10, 34–39 (2001).
  10. H. Fay, “Electro-optic modulation of light propagating near the optic axis in LiNbO3,” J. Opt. Soc. Am. 59, 1399–1404 (1969).
    [CrossRef]
  11. C. Li, “Optical voltage sensor using angular optical bias in lithium niobate crystal,” Chin. J. Sensors Actuators 20, 1494–1497 (2007).
  12. A. Garzarella, S. B. Qadri, and D. H. Wu, “Optical electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
    [CrossRef]
  13. K. Hidaka and K. Teruya, “Simultaneous measurement of two orthogonal components of electric field using a Pockels device,” Rev. Sci. Insrum. 60, 1252–1257 (1989).
    [CrossRef]
  14. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
    [CrossRef]
  15. C. A. Ebbers, “Linear electro-optic effect in β-BaB2O4,” Appl. Phys. Lett. 52, 1948–1949 (1988).
    [CrossRef]
  16. G. D. Goodno, Z. Guo, R. J. D. Miller, I. J. Miller, J. W. Montgomery, S. R. Adhav, and R. S. Adhav, “Investigation of β-BaB2O4 as a Q switch for high power applications,” Appl. Phys. Lett. 66, 1575–1577 (1995).
    [CrossRef]
  17. R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).
  18. F. Agulló-López, J. M. Cabrera, and F. Agulló-Rueda, Electro-optics: Phenomena, Materials and Applications (Academic, 1994), Chap. 2.
  19. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007), Chap. 9.
  20. C. Gutierrez-Martinez, J. Santos-Aguilar, R. Ochoa-Valiente, M. Santiago-Bernal, and A. Morales-Diaz, “Modeling and experimental electro-optic response of dielectric lithium niobate waveguides used as electric field sensors,” Meas. Sci. Technol. 22, 035207 (2011).
    [CrossRef]
  21. H. Chen and W. She, “Temperature dependence of electrooptic modulator and its optimal design,” Acta Optica Sinica 24, 1353–1357 (2004).

2012

2011

D. J. Lee, N. W. Kang, J. H. Choi, J. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors 11, 806–824 (2011).
[CrossRef]

S. Chadderdon, R. Gibson, R. H. Selfridge, S. M. Schultz, W. C. Wang, R. Forber, J. Luo, and A. K. Y. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

C. Gutierrez-Martinez, J. Santos-Aguilar, R. Ochoa-Valiente, M. Santiago-Bernal, and A. Morales-Diaz, “Modeling and experimental electro-optic response of dielectric lithium niobate waveguides used as electric field sensors,” Meas. Sci. Technol. 22, 035207 (2011).
[CrossRef]

2009

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optical electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
[CrossRef]

2008

R. Zeng, Y. Zhang, W. Chen, and B. Zhang, “Measurement of electric field distribution along composite insulators by integrated optical electric field sensor,” IEEE Trans. Dielectr. Electr. Insul. 15, 302–310 (2008).
[CrossRef]

2007

C. Li, “Optical voltage sensor using angular optical bias in lithium niobate crystal,” Chin. J. Sensors Actuators 20, 1494–1497 (2007).

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).

2005

W. K. Kuo and D. T. Tang, “Three-dimensional electric-field mapping system using crystal principal axes electro-optic rotation,” Rev. Sci. Instrum. 76, 055111 (2005).
[CrossRef]

2004

H. Chen and W. She, “Temperature dependence of electrooptic modulator and its optimal design,” Acta Optica Sinica 24, 1353–1357 (2004).

2002

2001

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensors,” Chin. J. Lasers B 10, 34–39 (2001).

1995

G. D. Goodno, Z. Guo, R. J. D. Miller, I. J. Miller, J. W. Montgomery, S. R. Adhav, and R. S. Adhav, “Investigation of β-BaB2O4 as a Q switch for high power applications,” Appl. Phys. Lett. 66, 1575–1577 (1995).
[CrossRef]

1994

N. A. F. Jaeger and F. Rahmatian, “Bias of integrated optics Pockels cell high-voltage sensors,” Proc. SPIE 2072, 87–95 (1994).
[CrossRef]

1989

K. Hidaka and K. Teruya, “Simultaneous measurement of two orthogonal components of electric field using a Pockels device,” Rev. Sci. Insrum. 60, 1252–1257 (1989).
[CrossRef]

1988

C. A. Ebbers, “Linear electro-optic effect in β-BaB2O4,” Appl. Phys. Lett. 52, 1948–1949 (1988).
[CrossRef]

1987

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

1969

Adhav, R. S.

G. D. Goodno, Z. Guo, R. J. D. Miller, I. J. Miller, J. W. Montgomery, S. R. Adhav, and R. S. Adhav, “Investigation of β-BaB2O4 as a Q switch for high power applications,” Appl. Phys. Lett. 66, 1575–1577 (1995).
[CrossRef]

Adhav, S. R.

G. D. Goodno, Z. Guo, R. J. D. Miller, I. J. Miller, J. W. Montgomery, S. R. Adhav, and R. S. Adhav, “Investigation of β-BaB2O4 as a Q switch for high power applications,” Appl. Phys. Lett. 66, 1575–1577 (1995).
[CrossRef]

Agulló-López, F.

F. Agulló-López, J. M. Cabrera, and F. Agulló-Rueda, Electro-optics: Phenomena, Materials and Applications (Academic, 1994), Chap. 2.

Agulló-Rueda, F.

F. Agulló-López, J. M. Cabrera, and F. Agulló-Rueda, Electro-optics: Phenomena, Materials and Applications (Academic, 1994), Chap. 2.

Balachandran, W.

F. Cecelja and W. Balachandran, “Compensation of environmental effects in bulk optical sensors,” IEEE Trans. Instrum. Meas. 51, 866–869 (2002).
[CrossRef]

Cabrera, J. M.

F. Agulló-López, J. M. Cabrera, and F. Agulló-Rueda, Electro-optics: Phenomena, Materials and Applications (Academic, 1994), Chap. 2.

Cecelja, F.

F. Cecelja and W. Balachandran, “Compensation of environmental effects in bulk optical sensors,” IEEE Trans. Instrum. Meas. 51, 866–869 (2002).
[CrossRef]

Chadderdon, S.

Chen, H.

H. Chen and W. She, “Temperature dependence of electrooptic modulator and its optimal design,” Acta Optica Sinica 24, 1353–1357 (2004).

Chen, L.

Chen, W.

R. Zeng, Y. Zhang, W. Chen, and B. Zhang, “Measurement of electric field distribution along composite insulators by integrated optical electric field sensor,” IEEE Trans. Dielectr. Electr. Insul. 15, 302–310 (2008).
[CrossRef]

Choi, J. H.

D. J. Lee, N. W. Kang, J. H. Choi, J. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors 11, 806–824 (2011).
[CrossRef]

Coutaz, J. L.

Cui, Y.

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensors,” Chin. J. Lasers B 10, 34–39 (2001).

Davis, L.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Degl’Innocenti, R.

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).

Döbeli, M.

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).

Duvillaret, L.

Ebbers, C. A.

C. A. Ebbers, “Linear electro-optic effect in β-BaB2O4,” Appl. Phys. Lett. 52, 1948–1949 (1988).
[CrossRef]

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Fay, H.

Forber, R.

Garzarella, A.

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optical electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
[CrossRef]

Gibson, R.

Goodno, G. D.

G. D. Goodno, Z. Guo, R. J. D. Miller, I. J. Miller, J. W. Montgomery, S. R. Adhav, and R. S. Adhav, “Investigation of β-BaB2O4 as a Q switch for high power applications,” Appl. Phys. Lett. 66, 1575–1577 (1995).
[CrossRef]

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Günter, P.

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).

Guo, Z.

G. D. Goodno, Z. Guo, R. J. D. Miller, I. J. Miller, J. W. Montgomery, S. R. Adhav, and R. S. Adhav, “Investigation of β-BaB2O4 as a Q switch for high power applications,” Appl. Phys. Lett. 66, 1575–1577 (1995).
[CrossRef]

Gutierrez-Martinez, C.

C. Gutierrez-Martinez, J. Santos-Aguilar, R. Ochoa-Valiente, M. Santiago-Bernal, and A. Morales-Diaz, “Modeling and experimental electro-optic response of dielectric lithium niobate waveguides used as electric field sensors,” Meas. Sci. Technol. 22, 035207 (2011).
[CrossRef]

Hidaka, K.

K. Hidaka and K. Teruya, “Simultaneous measurement of two orthogonal components of electric field using a Pockels device,” Rev. Sci. Insrum. 60, 1252–1257 (1989).
[CrossRef]

Jaeger, N. A. F.

N. A. F. Jaeger and F. Rahmatian, “Bias of integrated optics Pockels cell high-voltage sensors,” Proc. SPIE 2072, 87–95 (1994).
[CrossRef]

Jen, A. K. Y.

Kang, N. W.

D. J. Lee, N. W. Kang, J. H. Choi, J. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors 11, 806–824 (2011).
[CrossRef]

Kim, J.

D. J. Lee, N. W. Kang, J. H. Choi, J. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors 11, 806–824 (2011).
[CrossRef]

Kuo, W. K.

W. K. Kuo and D. T. Tang, “Three-dimensional electric-field mapping system using crystal principal axes electro-optic rotation,” Rev. Sci. Instrum. 76, 055111 (2005).
[CrossRef]

Lee, D. J.

D. J. Lee, N. W. Kang, J. H. Choi, J. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors 11, 806–824 (2011).
[CrossRef]

Li, C.

C. Li, “Optical voltage sensor using angular optical bias in lithium niobate crystal,” Chin. J. Sensors Actuators 20, 1494–1497 (2007).

Luo, J.

Luo, S.

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensors,” Chin. J. Lasers B 10, 34–39 (2001).

Majkic, A.

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).

Miller, I. J.

G. D. Goodno, Z. Guo, R. J. D. Miller, I. J. Miller, J. W. Montgomery, S. R. Adhav, and R. S. Adhav, “Investigation of β-BaB2O4 as a Q switch for high power applications,” Appl. Phys. Lett. 66, 1575–1577 (1995).
[CrossRef]

Miller, R. J. D.

G. D. Goodno, Z. Guo, R. J. D. Miller, I. J. Miller, J. W. Montgomery, S. R. Adhav, and R. S. Adhav, “Investigation of β-BaB2O4 as a Q switch for high power applications,” Appl. Phys. Lett. 66, 1575–1577 (1995).
[CrossRef]

Montgomery, J. W.

G. D. Goodno, Z. Guo, R. J. D. Miller, I. J. Miller, J. W. Montgomery, S. R. Adhav, and R. S. Adhav, “Investigation of β-BaB2O4 as a Q switch for high power applications,” Appl. Phys. Lett. 66, 1575–1577 (1995).
[CrossRef]

Morales-Diaz, A.

C. Gutierrez-Martinez, J. Santos-Aguilar, R. Ochoa-Valiente, M. Santiago-Bernal, and A. Morales-Diaz, “Modeling and experimental electro-optic response of dielectric lithium niobate waveguides used as electric field sensors,” Meas. Sci. Technol. 22, 035207 (2011).
[CrossRef]

Ochoa-Valiente, R.

C. Gutierrez-Martinez, J. Santos-Aguilar, R. Ochoa-Valiente, M. Santiago-Bernal, and A. Morales-Diaz, “Modeling and experimental electro-optic response of dielectric lithium niobate waveguides used as electric field sensors,” Meas. Sci. Technol. 22, 035207 (2011).
[CrossRef]

Poberaj, G.

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).

Qadri, S. B.

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optical electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
[CrossRef]

Rahmatian, F.

N. A. F. Jaeger and F. Rahmatian, “Bias of integrated optics Pockels cell high-voltage sensors,” Proc. SPIE 2072, 87–95 (1994).
[CrossRef]

Reano, R. M.

Rialland, S.

Santiago-Bernal, M.

C. Gutierrez-Martinez, J. Santos-Aguilar, R. Ochoa-Valiente, M. Santiago-Bernal, and A. Morales-Diaz, “Modeling and experimental electro-optic response of dielectric lithium niobate waveguides used as electric field sensors,” Meas. Sci. Technol. 22, 035207 (2011).
[CrossRef]

Santos-Aguilar, J.

C. Gutierrez-Martinez, J. Santos-Aguilar, R. Ochoa-Valiente, M. Santiago-Bernal, and A. Morales-Diaz, “Modeling and experimental electro-optic response of dielectric lithium niobate waveguides used as electric field sensors,” Meas. Sci. Technol. 22, 035207 (2011).
[CrossRef]

Schultz, S. M.

Selfridge, R. H.

She, W.

H. Chen and W. She, “Temperature dependence of electrooptic modulator and its optimal design,” Acta Optica Sinica 24, 1353–1357 (2004).

Tang, D. T.

W. K. Kuo and D. T. Tang, “Three-dimensional electric-field mapping system using crystal principal axes electro-optic rotation,” Rev. Sci. Instrum. 76, 055111 (2005).
[CrossRef]

Teruya, K.

K. Hidaka and K. Teruya, “Simultaneous measurement of two orthogonal components of electric field using a Pockels device,” Rev. Sci. Insrum. 60, 1252–1257 (1989).
[CrossRef]

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Vorburger, P.

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).

Wang, W. C.

Whitaker, J. F.

D. J. Lee, N. W. Kang, J. H. Choi, J. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors 11, 806–824 (2011).
[CrossRef]

Wu, D. H.

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optical electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
[CrossRef]

Xu, Y.

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensors,” Chin. J. Lasers B 10, 34–39 (2001).

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007), Chap. 9.

Ye, M.

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensors,” Chin. J. Lasers B 10, 34–39 (2001).

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007), Chap. 9.

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Zeng, R.

R. Zeng, Y. Zhang, W. Chen, and B. Zhang, “Measurement of electric field distribution along composite insulators by integrated optical electric field sensor,” IEEE Trans. Dielectr. Electr. Insul. 15, 302–310 (2008).
[CrossRef]

Zhang, B.

R. Zeng, Y. Zhang, W. Chen, and B. Zhang, “Measurement of electric field distribution along composite insulators by integrated optical electric field sensor,” IEEE Trans. Dielectr. Electr. Insul. 15, 302–310 (2008).
[CrossRef]

Zhang, Y.

R. Zeng, Y. Zhang, W. Chen, and B. Zhang, “Measurement of electric field distribution along composite insulators by integrated optical electric field sensor,” IEEE Trans. Dielectr. Electr. Insul. 15, 302–310 (2008).
[CrossRef]

Acta Optica Sinica

H. Chen and W. She, “Temperature dependence of electrooptic modulator and its optimal design,” Acta Optica Sinica 24, 1353–1357 (2004).

Appl. Opt.

Appl. Phys. Lett.

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optical electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
[CrossRef]

C. A. Ebbers, “Linear electro-optic effect in β-BaB2O4,” Appl. Phys. Lett. 52, 1948–1949 (1988).
[CrossRef]

G. D. Goodno, Z. Guo, R. J. D. Miller, I. J. Miller, J. W. Montgomery, S. R. Adhav, and R. S. Adhav, “Investigation of β-BaB2O4 as a Q switch for high power applications,” Appl. Phys. Lett. 66, 1575–1577 (1995).
[CrossRef]

R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, P. Günter, and M. Döbeli, “Ultraviolet electro-optic amplitude modulation in β-BaB2O4 waveguides,” Appl. Phys. Lett. 91, 051105 (2007).

Chin. J. Lasers B

S. Luo, M. Ye, Y. Xu, and Y. Cui, “Analysis and improvement of reflection-type transverse modulation optical voltage sensors,” Chin. J. Lasers B 10, 34–39 (2001).

Chin. J. Sensors Actuators

C. Li, “Optical voltage sensor using angular optical bias in lithium niobate crystal,” Chin. J. Sensors Actuators 20, 1494–1497 (2007).

IEEE Trans. Dielectr. Electr. Insul.

R. Zeng, Y. Zhang, W. Chen, and B. Zhang, “Measurement of electric field distribution along composite insulators by integrated optical electric field sensor,” IEEE Trans. Dielectr. Electr. Insul. 15, 302–310 (2008).
[CrossRef]

IEEE Trans. Instrum. Meas.

F. Cecelja and W. Balachandran, “Compensation of environmental effects in bulk optical sensors,” IEEE Trans. Instrum. Meas. 51, 866–869 (2002).
[CrossRef]

J. Appl. Phys.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Meas. Sci. Technol.

C. Gutierrez-Martinez, J. Santos-Aguilar, R. Ochoa-Valiente, M. Santiago-Bernal, and A. Morales-Diaz, “Modeling and experimental electro-optic response of dielectric lithium niobate waveguides used as electric field sensors,” Meas. Sci. Technol. 22, 035207 (2011).
[CrossRef]

Opt. Express

Proc. SPIE

N. A. F. Jaeger and F. Rahmatian, “Bias of integrated optics Pockels cell high-voltage sensors,” Proc. SPIE 2072, 87–95 (1994).
[CrossRef]

Rev. Sci. Insrum.

K. Hidaka and K. Teruya, “Simultaneous measurement of two orthogonal components of electric field using a Pockels device,” Rev. Sci. Insrum. 60, 1252–1257 (1989).
[CrossRef]

Rev. Sci. Instrum.

W. K. Kuo and D. T. Tang, “Three-dimensional electric-field mapping system using crystal principal axes electro-optic rotation,” Rev. Sci. Instrum. 76, 055111 (2005).
[CrossRef]

Sensors

D. J. Lee, N. W. Kang, J. H. Choi, J. Kim, and J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors 11, 806–824 (2011).
[CrossRef]

Other

F. Agulló-López, J. M. Cabrera, and F. Agulló-Rueda, Electro-optics: Phenomena, Materials and Applications (Academic, 1994), Chap. 2.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the optical electric field sensing unit based on angular optical bias produced by the sensing crystal itself, where θ is a small angular rotation between the light beam and the x3 axis of the sensing crystal.

Fig. 2.
Fig. 2.

Schematic of phase retardation γ0 as a function of angle θ.

Fig. 3.
Fig. 3.

Experimental setups of the optical electric field sensor using a single BBO crystal.

Fig. 4.
Fig. 4.

Typical waveforms of the 50 Hz ac applied E-field (CH1) and corresponding output-sensing signal (CH2).

Fig. 5.
Fig. 5.

Experimental data of output ac voltage versus measurand ac electric field and corresponding linear fitting line.

Fig. 6.
Fig. 6.

Waveforms of the positive lighting impulse E-field (CH1) and corresponding output-sensing signal (CH2).

Fig. 7.
Fig. 7.

Experimental data of output voltage versus ambient temperature when the measurand electric field was 139kV/m.

Fig. 8.
Fig. 8.

E-field distributions around and inside the BBO crystal under a uniformly applied static E-field.

Fig. 9.
Fig. 9.

Schematic of temperature dependence of angular optical bias produced by the BBO crystal.

Tables (1)

Tables Icon

Table 1. Typical Physical Properties of BBO, LN, and BGO Crystals [1418]

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

γ0=2πλ(noneno2sin2θ+ne2cos2θno)Lcosθ,
n1no+0.5no3r22E2n2no0.5no3r22E2n3ne,
Δγ(E2)=2πλ(n1n2)Lcosθ=2πλno3r22E2Lcosθ=πEπcosθE2,
IoIi=12(1±cosγ).
IoIi=12(1sinΔγ)12(1Δγ)=12(1E2Eπcosθπ).
Eac=Uacha+hb/εr1+hp/εr2Uac8.09(kV/m),

Metrics