Abstract

We present a novel and simple mechanism for the fabrication of periodic microstructure based on a ferrofluids core/metal cladding optical waveguide chip. The ultrahigh-order modes excited in the millimeter scale guiding layer lead to the ordered particle aggregates in ferrofluids without applying a magnetic field. Since the absorption of photons by the extremely dilute ferrofluids is extremely small and the Soret effect is not noticeable, a tentative explanation in terms of the optical trapping effect is proposed. Furthermore, this scheme exhibits all-optically tunable reflectivity and lateral Goos–Hänchen shift, which potentially may be for practical use in novel optical devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef]
  2. R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameter: Theory, Design, and Microwave Applications (Wiley, 2008).
  3. M. A. Noginov and V. A. Podolskiy, Tutorials in Metamaterials (CRC Press, 2010).
  4. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  5. M. Madou, Fundamentals of Microfabrication (CRC Press, 1997).
  6. Y. Xia, B. Gates, and Z. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
    [CrossRef]
  7. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
    [CrossRef]
  8. M. Honda, T. Seki, and Y. Takeoka, “Dual tuning of the photonic band-gap structure in soft photonic crystals,” Adv. Mater. 21, 1801–1804 (2009).
    [CrossRef]
  9. W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
    [CrossRef]
  10. F. Du, Y. Lu, and S. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
    [CrossRef]
  11. G. Wang, J. Huang, and K. Yu, “Tunable photonic Bloch oscillations in electrically modulated photonic crystals,” Opt. Lett. 33, 2200–2202 (2008).
    [CrossRef]
  12. Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).
    [CrossRef]
  13. H. Hu, J. Tang, H. Zhong, Z. Xi, C. Chen, and Q. Chen, “Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field,” Sci. Rep. 3, 1484 (2013).
    [CrossRef]
  14. L. He, M. Wang, J. Ge, and Y. Yin, “Magnetic assembly route to colloidal responsive photonic nanostructures,” Acc. Chem. Res. 45, 1431–1440 (2012).
    [CrossRef]
  15. Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003).
    [CrossRef]
  16. C. Hong, Y. Yeh, S. Yang, H. Horng, and H. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. 283, 22–27 (2004).
    [CrossRef]
  17. R. M. Erb and B. B. Yellen, “Concentration gradients in mixed magnetic and nonmagnetic colloidal suspensions,” J. Appl. Phys. 103, 07A312 (2008).
    [CrossRef]
  18. Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
    [CrossRef]
  19. H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
    [CrossRef]
  20. J. Hao, H. Li, C. Yin, and Z. Cao, “1.5  mm light beam shift arising from 14  pm variation of wavelength,” J. Opt. Soc. Am. B 27, 1305–1308 (2010).
    [CrossRef]
  21. Y. Y. Sun, J. Bu, L. S. Ong, and X.-C. Yuan, “Simultaneous optical trapping of microparticles in multiple planes by a modified self-imaging effect on a chip,” Appl. Phys. Lett. 91, 051101 (2007).
    [CrossRef]
  22. W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
    [CrossRef]
  23. D. Erickson, X. Serey, Y. F. Cehn, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
    [CrossRef]
  24. N. V. Tabiryan and W. Luo, “Soret feedback in thermal diffusion of suspensions,” Phys. Rev. E 57, 4431–4440 (1998).
    [CrossRef]
  25. J. Sun, C. Yin, C. Zhu, X. Wang, W. Yuan, P. Xiao, X. Chen, and Z. Cao, “Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field,” J. Opt. Soc. Am. B 29, 769–773 (2012).
    [CrossRef]
  26. C. Yin, J. Sun, X. Wang, C. Zhu, Q. Han, Z. Di, and Z. Cao, “Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip,” Europhys. Lett. 100, 44001 (2012).
    [CrossRef]
  27. Y. Feng, Z. Cao, Q. Shen, and F. Chen, “Effect of nonparallelism of guiding air-liquid layers on the reflection dip in attenuated total reflection,” Appl. Opt. 46, 58–60 (2007).
    [CrossRef]
  28. V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55, 85–90 (1985).
    [CrossRef]

2013 (1)

H. Hu, J. Tang, H. Zhong, Z. Xi, C. Chen, and Q. Chen, “Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field,” Sci. Rep. 3, 1484 (2013).
[CrossRef]

2012 (3)

L. He, M. Wang, J. Ge, and Y. Yin, “Magnetic assembly route to colloidal responsive photonic nanostructures,” Acc. Chem. Res. 45, 1431–1440 (2012).
[CrossRef]

J. Sun, C. Yin, C. Zhu, X. Wang, W. Yuan, P. Xiao, X. Chen, and Z. Cao, “Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field,” J. Opt. Soc. Am. B 29, 769–773 (2012).
[CrossRef]

C. Yin, J. Sun, X. Wang, C. Zhu, Q. Han, Z. Di, and Z. Cao, “Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip,” Europhys. Lett. 100, 44001 (2012).
[CrossRef]

2011 (2)

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

D. Erickson, X. Serey, Y. F. Cehn, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[CrossRef]

2010 (1)

2009 (1)

M. Honda, T. Seki, and Y. Takeoka, “Dual tuning of the photonic band-gap structure in soft photonic crystals,” Adv. Mater. 21, 1801–1804 (2009).
[CrossRef]

2008 (3)

G. Wang, J. Huang, and K. Yu, “Tunable photonic Bloch oscillations in electrically modulated photonic crystals,” Opt. Lett. 33, 2200–2202 (2008).
[CrossRef]

R. M. Erb and B. B. Yellen, “Concentration gradients in mixed magnetic and nonmagnetic colloidal suspensions,” J. Appl. Phys. 103, 07A312 (2008).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

2007 (2)

Y. Y. Sun, J. Bu, L. S. Ong, and X.-C. Yuan, “Simultaneous optical trapping of microparticles in multiple planes by a modified self-imaging effect on a chip,” Appl. Phys. Lett. 91, 051101 (2007).
[CrossRef]

Y. Feng, Z. Cao, Q. Shen, and F. Chen, “Effect of nonparallelism of guiding air-liquid layers on the reflection dip in attenuated total reflection,” Appl. Opt. 46, 58–60 (2007).
[CrossRef]

2006 (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

2004 (3)

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[CrossRef]

F. Du, Y. Lu, and S. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

C. Hong, Y. Yeh, S. Yang, H. Horng, and H. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. 283, 22–27 (2004).
[CrossRef]

2003 (3)

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003).
[CrossRef]

2002 (1)

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).
[CrossRef]

2001 (1)

Y. Xia, B. Gates, and Z. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
[CrossRef]

1998 (1)

N. V. Tabiryan and W. Luo, “Soret feedback in thermal diffusion of suspensions,” Phys. Rev. E 57, 4431–4440 (1998).
[CrossRef]

1985 (1)

V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55, 85–90 (1985).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55, 85–90 (1985).
[CrossRef]

Bu, J.

Y. Y. Sun, J. Bu, L. S. Ong, and X.-C. Yuan, “Simultaneous optical trapping of microparticles in multiple planes by a modified self-imaging effect on a chip,” Appl. Phys. Lett. 91, 051101 (2007).
[CrossRef]

Cao, Z.

J. Sun, C. Yin, C. Zhu, X. Wang, W. Yuan, P. Xiao, X. Chen, and Z. Cao, “Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field,” J. Opt. Soc. Am. B 29, 769–773 (2012).
[CrossRef]

C. Yin, J. Sun, X. Wang, C. Zhu, Q. Han, Z. Di, and Z. Cao, “Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip,” Europhys. Lett. 100, 44001 (2012).
[CrossRef]

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

J. Hao, H. Li, C. Yin, and Z. Cao, “1.5  mm light beam shift arising from 14  pm variation of wavelength,” J. Opt. Soc. Am. B 27, 1305–1308 (2010).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Y. Feng, Z. Cao, Q. Shen, and F. Chen, “Effect of nonparallelism of guiding air-liquid layers on the reflection dip in attenuated total reflection,” Appl. Opt. 46, 58–60 (2007).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

Cehn, Y. F.

D. Erickson, X. Serey, Y. F. Cehn, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[CrossRef]

Chen, C.

H. Hu, J. Tang, H. Zhong, Z. Xi, C. Chen, and Q. Chen, “Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field,” Sci. Rep. 3, 1484 (2013).
[CrossRef]

Chen, F.

Chen, Q.

H. Hu, J. Tang, H. Zhong, Z. Xi, C. Chen, and Q. Chen, “Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field,” Sci. Rep. 3, 1484 (2013).
[CrossRef]

Chen, X.

J. Sun, C. Yin, C. Zhu, X. Wang, W. Yuan, P. Xiao, X. Chen, and Z. Cao, “Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field,” J. Opt. Soc. Am. B 29, 769–773 (2012).
[CrossRef]

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Davidov, D.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Di, Z.

C. Yin, J. Sun, X. Wang, C. Zhu, Q. Han, Z. Di, and Z. Cao, “Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip,” Europhys. Lett. 100, 44001 (2012).
[CrossRef]

Du, F.

F. Du, Y. Lu, and S. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Erb, R. M.

R. M. Erb and B. B. Yellen, “Concentration gradients in mixed magnetic and nonmagnetic colloidal suspensions,” J. Appl. Phys. 103, 07A312 (2008).
[CrossRef]

Erickson, D.

D. Erickson, X. Serey, Y. F. Cehn, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[CrossRef]

Feng, Y.

Frenkel, A.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Gates, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Y. Xia, B. Gates, and Z. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
[CrossRef]

Ge, J.

L. He, M. Wang, J. Ge, and Y. Yin, “Magnetic assembly route to colloidal responsive photonic nanostructures,” Acc. Chem. Res. 45, 1431–1440 (2012).
[CrossRef]

Golosovsky, M.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Han, Q.

C. Yin, J. Sun, X. Wang, C. Zhu, Q. Han, Z. Di, and Z. Cao, “Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip,” Europhys. Lett. 100, 44001 (2012).
[CrossRef]

Hao, J.

He, L.

L. He, M. Wang, J. Ge, and Y. Yin, “Magnetic assembly route to colloidal responsive photonic nanostructures,” Acc. Chem. Res. 45, 1431–1440 (2012).
[CrossRef]

He, Y.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Honda, M.

M. Honda, T. Seki, and Y. Takeoka, “Dual tuning of the photonic band-gap structure in soft photonic crystals,” Adv. Mater. 21, 1801–1804 (2009).
[CrossRef]

Hong, C.

C. Hong, Y. Yeh, S. Yang, H. Horng, and H. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. 283, 22–27 (2004).
[CrossRef]

Horng, H.

C. Hong, Y. Yeh, S. Yang, H. Horng, and H. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. 283, 22–27 (2004).
[CrossRef]

Hu, H.

H. Hu, J. Tang, H. Zhong, Z. Xi, C. Chen, and Q. Chen, “Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field,” Sci. Rep. 3, 1484 (2013).
[CrossRef]

Huang, J.

Ito, K.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003).
[CrossRef]

Iwayama, Y.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Kim, F.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Kravtsov, V. E.

V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55, 85–90 (1985).
[CrossRef]

Lee, J.-B.

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[CrossRef]

Li, H.

J. Hao, H. Li, C. Yin, and Z. Cao, “1.5  mm light beam shift arising from 14  pm variation of wavelength,” J. Opt. Soc. Am. B 27, 1305–1308 (2010).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

Li, Z.

Y. Xia, B. Gates, and Z. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
[CrossRef]

Lu, H.

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

Lu, Y.

F. Du, Y. Lu, and S. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Luo, W.

N. V. Tabiryan and W. Luo, “Soret feedback in thermal diffusion of suspensions,” Phys. Rev. E 57, 4431–4440 (1998).
[CrossRef]

Madou, M.

M. Madou, Fundamentals of Microfabrication (CRC Press, 1997).

Mandal, S.

D. Erickson, X. Serey, Y. F. Cehn, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[CrossRef]

Marqués, R.

R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameter: Theory, Design, and Microwave Applications (Wiley, 2008).

Martín, F.

R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameter: Theory, Design, and Microwave Applications (Wiley, 2008).

Mayers, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Noginov, M. A.

M. A. Noginov and V. A. Podolskiy, Tutorials in Metamaterials (CRC Press, 2010).

Ong, L. S.

Y. Y. Sun, J. Bu, L. S. Ong, and X.-C. Yuan, “Simultaneous optical trapping of microparticles in multiple planes by a modified self-imaging effect on a chip,” Appl. Phys. Lett. 91, 051101 (2007).
[CrossRef]

Park, W.

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Podolskiy, V. A.

M. A. Noginov and V. A. Podolskiy, Tutorials in Metamaterials (CRC Press, 2010).

Saado, Y.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Sang, M.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Sawada, T.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Seki, T.

M. Honda, T. Seki, and Y. Takeoka, “Dual tuning of the photonic band-gap structure in soft photonic crystals,” Adv. Mater. 21, 1801–1804 (2009).
[CrossRef]

Serey, X.

D. Erickson, X. Serey, Y. F. Cehn, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[CrossRef]

Shen, Q.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Y. Feng, Z. Cao, Q. Shen, and F. Chen, “Effect of nonparallelism of guiding air-liquid layers on the reflection dip in attenuated total reflection,” Appl. Opt. 46, 58–60 (2007).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

Shinohara, T.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Sorolla, M.

R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameter: Theory, Design, and Microwave Applications (Wiley, 2008).

Sun, J.

J. Sun, C. Yin, C. Zhu, X. Wang, W. Yuan, P. Xiao, X. Chen, and Z. Cao, “Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field,” J. Opt. Soc. Am. B 29, 769–773 (2012).
[CrossRef]

C. Yin, J. Sun, X. Wang, C. Zhu, Q. Han, Z. Di, and Z. Cao, “Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip,” Europhys. Lett. 100, 44001 (2012).
[CrossRef]

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Sun, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Sun, Y. Y.

Y. Y. Sun, J. Bu, L. S. Ong, and X.-C. Yuan, “Simultaneous optical trapping of microparticles in multiple planes by a modified self-imaging effect on a chip,” Appl. Phys. Lett. 91, 051101 (2007).
[CrossRef]

Tabiryan, N. V.

N. V. Tabiryan and W. Luo, “Soret feedback in thermal diffusion of suspensions,” Phys. Rev. E 57, 4431–4440 (1998).
[CrossRef]

Takasaka, M.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003).
[CrossRef]

Takeoka, Y.

M. Honda, T. Seki, and Y. Takeoka, “Dual tuning of the photonic band-gap structure in soft photonic crystals,” Adv. Mater. 21, 1801–1804 (2009).
[CrossRef]

Takiguchi, Y.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003).
[CrossRef]

Tang, J.

H. Hu, J. Tang, H. Zhong, Z. Xi, C. Chen, and Q. Chen, “Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field,” Sci. Rep. 3, 1484 (2013).
[CrossRef]

Wang, G.

Wang, M.

L. He, M. Wang, J. Ge, and Y. Yin, “Magnetic assembly route to colloidal responsive photonic nanostructures,” Acc. Chem. Res. 45, 1431–1440 (2012).
[CrossRef]

Wang, X.

C. Yin, J. Sun, X. Wang, C. Zhu, Q. Han, Z. Di, and Z. Cao, “Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip,” Europhys. Lett. 100, 44001 (2012).
[CrossRef]

J. Sun, C. Yin, C. Zhu, X. Wang, W. Yuan, P. Xiao, X. Chen, and Z. Cao, “Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field,” J. Opt. Soc. Am. B 29, 769–773 (2012).
[CrossRef]

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Wang, Y.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Wu, S.

F. Du, Y. Lu, and S. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Wu, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Xi, Z.

H. Hu, J. Tang, H. Zhong, Z. Xi, C. Chen, and Q. Chen, “Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field,” Sci. Rep. 3, 1484 (2013).
[CrossRef]

Xia, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Y. Xia, B. Gates, and Z. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
[CrossRef]

Xiao, P.

J. Sun, C. Yin, C. Zhu, X. Wang, W. Yuan, P. Xiao, X. Chen, and Z. Cao, “Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field,” J. Opt. Soc. Am. B 29, 769–773 (2012).
[CrossRef]

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Yamanaka, J.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003).
[CrossRef]

Yan, H.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Yang, H.

C. Hong, Y. Yeh, S. Yang, H. Horng, and H. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. 283, 22–27 (2004).
[CrossRef]

Yang, P.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Yang, S.

C. Hong, Y. Yeh, S. Yang, H. Horng, and H. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. 283, 22–27 (2004).
[CrossRef]

Yeh, Y.

C. Hong, Y. Yeh, S. Yang, H. Horng, and H. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. 283, 22–27 (2004).
[CrossRef]

Yellen, B. B.

R. M. Erb and B. B. Yellen, “Concentration gradients in mixed magnetic and nonmagnetic colloidal suspensions,” J. Appl. Phys. 103, 07A312 (2008).
[CrossRef]

Yin, C.

C. Yin, J. Sun, X. Wang, C. Zhu, Q. Han, Z. Di, and Z. Cao, “Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip,” Europhys. Lett. 100, 44001 (2012).
[CrossRef]

J. Sun, C. Yin, C. Zhu, X. Wang, W. Yuan, P. Xiao, X. Chen, and Z. Cao, “Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field,” J. Opt. Soc. Am. B 29, 769–773 (2012).
[CrossRef]

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

J. Hao, H. Li, C. Yin, and Z. Cao, “1.5  mm light beam shift arising from 14  pm variation of wavelength,” J. Opt. Soc. Am. B 27, 1305–1308 (2010).
[CrossRef]

Yin, Y.

L. He, M. Wang, J. Ge, and Y. Yin, “Magnetic assembly route to colloidal responsive photonic nanostructures,” Acc. Chem. Res. 45, 1431–1440 (2012).
[CrossRef]

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

Yonese, M.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003).
[CrossRef]

Yu, K.

Yu, T.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Yuan, W.

J. Sun, C. Yin, C. Zhu, X. Wang, W. Yuan, P. Xiao, X. Chen, and Z. Cao, “Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field,” J. Opt. Soc. Am. B 29, 769–773 (2012).
[CrossRef]

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Yuan, X.-C.

Y. Y. Sun, J. Bu, L. S. Ong, and X.-C. Yuan, “Simultaneous optical trapping of microparticles in multiple planes by a modified self-imaging effect on a chip,” Appl. Phys. Lett. 91, 051101 (2007).
[CrossRef]

Zhong, H.

H. Hu, J. Tang, H. Zhong, Z. Xi, C. Chen, and Q. Chen, “Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field,” Sci. Rep. 3, 1484 (2013).
[CrossRef]

Zhu, C.

C. Yin, J. Sun, X. Wang, C. Zhu, Q. Han, Z. Di, and Z. Cao, “Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip,” Europhys. Lett. 100, 44001 (2012).
[CrossRef]

J. Sun, C. Yin, C. Zhu, X. Wang, W. Yuan, P. Xiao, X. Chen, and Z. Cao, “Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field,” J. Opt. Soc. Am. B 29, 769–773 (2012).
[CrossRef]

Acc. Chem. Res. (1)

L. He, M. Wang, J. Ge, and Y. Yin, “Magnetic assembly route to colloidal responsive photonic nanostructures,” Acc. Chem. Res. 45, 1431–1440 (2012).
[CrossRef]

Adv. Mater. (3)

Y. Xia, B. Gates, and Z. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. 13, 409–413 (2001).
[CrossRef]

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003).
[CrossRef]

M. Honda, T. Seki, and Y. Takeoka, “Dual tuning of the photonic band-gap structure in soft photonic crystals,” Adv. Mater. 21, 1801–1804 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

Y. Y. Sun, J. Bu, L. S. Ong, and X.-C. Yuan, “Simultaneous optical trapping of microparticles in multiple planes by a modified self-imaging effect on a chip,” Appl. Phys. Lett. 91, 051101 (2007).
[CrossRef]

W. Park and J.-B. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85, 4845–4847 (2004).
[CrossRef]

F. Du, Y. Lu, and S. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Europhys. Lett. (1)

C. Yin, J. Sun, X. Wang, C. Zhu, Q. Han, Z. Di, and Z. Cao, “Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip,” Europhys. Lett. 100, 44001 (2012).
[CrossRef]

J. Appl. Phys. (1)

R. M. Erb and B. B. Yellen, “Concentration gradients in mixed magnetic and nonmagnetic colloidal suspensions,” J. Appl. Phys. 103, 07A312 (2008).
[CrossRef]

J. Magn. Magn. (1)

C. Hong, Y. Yeh, S. Yang, H. Horng, and H. Yang, “Ordered structures with point-like defects of various shapes in magnetic fluid films,” J. Magn. Magn. 283, 22–27 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Lab Chip (1)

D. Erickson, X. Serey, Y. F. Cehn, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[CrossRef]

Langmuir (1)

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19, 977–980 (2003).
[CrossRef]

Microfluid. Nanofluid. (1)

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, M. Sang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, “Tunable photonic band gap in self-assembled clusters of floating magnetic particles,” Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Phys. Rev. E (1)

N. V. Tabiryan and W. Luo, “Soret feedback in thermal diffusion of suspensions,” Phys. Rev. E 57, 4431–4440 (1998).
[CrossRef]

Sci. Rep. (1)

H. Hu, J. Tang, H. Zhong, Z. Xi, C. Chen, and Q. Chen, “Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field,” Sci. Rep. 3, 1484 (2013).
[CrossRef]

Science (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Solid State Commun. (1)

V. M. Agranovich and V. E. Kravtsov, “Notes on crystal optics of superlattices,” Solid State Commun. 55, 85–90 (1985).
[CrossRef]

Other (4)

R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameter: Theory, Design, and Microwave Applications (Wiley, 2008).

M. A. Noginov and V. A. Podolskiy, Tutorials in Metamaterials (CRC Press, 2010).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

M. Madou, Fundamentals of Microfabrication (CRC Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Scheme diagrams of the liquid core/metal cladding waveguide chip, (b) the periodic energy pattern of the ultrahigh-order mode, and (c) the formed periodic-like microstructure of ferrofluids in the guiding layer.

Fig. 2.
Fig. 2.

Variations in the reflectivity and lateral Goos–Hänchen shift of the probe laser when the pump laser is switched on and off several times.

Fig. 3.
Fig. 3.

Normalized reflectivity spectrums for TM mode (red) and TE mode (black). (a) No pump laser was applied. (b) The pump laser was applied.

Fig. 4.
Fig. 4.

Reflectivity of probe laser versus pump laser power P. The reflectivity is normalized to unity at P=0W. The incident angles of the pump laser and probe laser are 4.21 and 7.13 deg, respectively. The inset shows the stable reflectivity with respect to different pump laser intensity as a function of time.

Metrics