Abstract

A sample-grating distributed Bragg reflector (SG-DBR) laser with 18 preprogrammed channels operating at 1540–1580 nm is characterized and compared for use as a source of tunable diode laser gas absorption spectroscopy. Two gases, CO and CO2, were targeted in this study by direct absorption spectroscopy and wavelength modulation spectroscopy with second-harmonic detection. In addition, the detectability of sample optical thickness is reported. Potential extensions of this research in the future are assessed using the SG-DBR diode laser as a source for tunable diode laser gas absorption spectroscopy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ebert, S. Wagner, B. T. Fisher, and J. W. Fleming, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
    [Crossref]
  2. S. Gersen, A. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame 143, 333–336 (2005).
    [Crossref]
  3. M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
    [Crossref]
  4. V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
    [Crossref]
  5. Y. J. Zhang, X. W. Shu, R. F. Kan, Y. B. Cu, Y. He, S. Zhang, H. Geng, and W. Q. Liu, “An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method,” Spectrosc. Spect. Anal. 30, 1352–1356 (2010).
  6. P. Monkhouse, “On-line spectroscopic and spectrometric methods for the determination of metal species in industrial processes,” Prog. Energy Combust. Sci. 37, 125–171 (2011).
    [Crossref]
  7. D. Vujanic, W. Jaeger, and J. Tulip, “Effect of optical feedback on a VCSEL TDLAS,” Appl. Phys. B 99, 585–589 (2010).
    [Crossref]
  8. C. Erbel, M. Mayerhofer, P. Monkhouse, M. Gaderer, and H. Spliethoff, “Continuous in situ measurements of alkali species in the gasification of biomass,” Proc. Combust. Inst. 34, 2331–2338 (2013).
    [Crossref]
  9. S. Kim, Y. Chung, and Y. T. Byun, “Tuning characteristics analysis of a widely tunable sampled grating distributed feedback laser diode integrated with a sampled grating distributed Bragg reflector,” J. Korean Phys. Soc. 52, 1036–1042 (2008).
    [Crossref]
  10. K. Shi, F. Smyth, P. M. Anandarajah, D. Reid, Y. L. Yu, and L. P. Barry, “Linewidth of SG-DBR laser and its effect on DPSK transmission,” Opt. Commun. 283, 5040–5045 (2010).
    [Crossref]
  11. V. Weldon, P. Pineda-Vadillo, M. Lynch, R. Phelan, and J. F. Donegan, “A novel discrete mode narrow linewidth laser diode for spectroscopic based gas sensing in the 1.5  μm region,” Appl. Phys. B 109, 433–440 (2012).
    [Crossref]
  12. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
    [Crossref]

2013 (1)

C. Erbel, M. Mayerhofer, P. Monkhouse, M. Gaderer, and H. Spliethoff, “Continuous in situ measurements of alkali species in the gasification of biomass,” Proc. Combust. Inst. 34, 2331–2338 (2013).
[Crossref]

2012 (1)

V. Weldon, P. Pineda-Vadillo, M. Lynch, R. Phelan, and J. F. Donegan, “A novel discrete mode narrow linewidth laser diode for spectroscopic based gas sensing in the 1.5  μm region,” Appl. Phys. B 109, 433–440 (2012).
[Crossref]

2011 (1)

P. Monkhouse, “On-line spectroscopic and spectrometric methods for the determination of metal species in industrial processes,” Prog. Energy Combust. Sci. 37, 125–171 (2011).
[Crossref]

2010 (4)

D. Vujanic, W. Jaeger, and J. Tulip, “Effect of optical feedback on a VCSEL TDLAS,” Appl. Phys. B 99, 585–589 (2010).
[Crossref]

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Y. J. Zhang, X. W. Shu, R. F. Kan, Y. B. Cu, Y. He, S. Zhang, H. Geng, and W. Q. Liu, “An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method,” Spectrosc. Spect. Anal. 30, 1352–1356 (2010).

K. Shi, F. Smyth, P. M. Anandarajah, D. Reid, Y. L. Yu, and L. P. Barry, “Linewidth of SG-DBR laser and its effect on DPSK transmission,” Opt. Commun. 283, 5040–5045 (2010).
[Crossref]

2009 (1)

V. Ebert, S. Wagner, B. T. Fisher, and J. W. Fleming, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[Crossref]

2008 (1)

S. Kim, Y. Chung, and Y. T. Byun, “Tuning characteristics analysis of a widely tunable sampled grating distributed feedback laser diode integrated with a sampled grating distributed Bragg reflector,” J. Korean Phys. Soc. 52, 1036–1042 (2008).
[Crossref]

2007 (1)

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
[Crossref]

2005 (1)

S. Gersen, A. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame 143, 333–336 (2005).
[Crossref]

1993 (1)

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Amarouche, N.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Anandarajah, P. M.

K. Shi, F. Smyth, P. M. Anandarajah, D. Reid, Y. L. Yu, and L. P. Barry, “Linewidth of SG-DBR laser and its effect on DPSK transmission,” Opt. Commun. 283, 5040–5045 (2010).
[Crossref]

Barry, L. P.

K. Shi, F. Smyth, P. M. Anandarajah, D. Reid, Y. L. Yu, and L. P. Barry, “Linewidth of SG-DBR laser and its effect on DPSK transmission,” Opt. Commun. 283, 5040–5045 (2010).
[Crossref]

Byun, Y. T.

S. Kim, Y. Chung, and Y. T. Byun, “Tuning characteristics analysis of a widely tunable sampled grating distributed feedback laser diode integrated with a sampled grating distributed Bragg reflector,” J. Korean Phys. Soc. 52, 1036–1042 (2008).
[Crossref]

Chung, Y.

S. Kim, Y. Chung, and Y. T. Byun, “Tuning characteristics analysis of a widely tunable sampled grating distributed feedback laser diode integrated with a sampled grating distributed Bragg reflector,” J. Korean Phys. Soc. 52, 1036–1042 (2008).
[Crossref]

Cousin, J.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Cu, Y. B.

Y. J. Zhang, X. W. Shu, R. F. Kan, Y. B. Cu, Y. He, S. Zhang, H. Geng, and W. Q. Liu, “An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method,” Spectrosc. Spect. Anal. 30, 1352–1356 (2010).

Decarpenterie, T.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Donegan, J. F.

V. Weldon, P. Pineda-Vadillo, M. Lynch, R. Phelan, and J. F. Donegan, “A novel discrete mode narrow linewidth laser diode for spectroscopic based gas sensing in the 1.5  μm region,” Appl. Phys. B 109, 433–440 (2012).
[Crossref]

Durry, G.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Ebert, V.

V. Ebert, S. Wagner, B. T. Fisher, and J. W. Fleming, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[Crossref]

Erbel, C.

C. Erbel, M. Mayerhofer, P. Monkhouse, M. Gaderer, and H. Spliethoff, “Continuous in situ measurements of alkali species in the gasification of biomass,” Proc. Combust. Inst. 34, 2331–2338 (2013).
[Crossref]

Fisher, B. T.

V. Ebert, S. Wagner, B. T. Fisher, and J. W. Fleming, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[Crossref]

Fleming, J. W.

V. Ebert, S. Wagner, B. T. Fisher, and J. W. Fleming, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[Crossref]

Gaderer, M.

C. Erbel, M. Mayerhofer, P. Monkhouse, M. Gaderer, and H. Spliethoff, “Continuous in situ measurements of alkali species in the gasification of biomass,” Proc. Combust. Inst. 34, 2331–2338 (2013).
[Crossref]

Geng, H.

Y. J. Zhang, X. W. Shu, R. F. Kan, Y. B. Cu, Y. He, S. Zhang, H. Geng, and W. Q. Liu, “An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method,” Spectrosc. Spect. Anal. 30, 1352–1356 (2010).

Gerasimov, M.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Gersen, S.

S. Gersen, A. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame 143, 333–336 (2005).
[Crossref]

He, Y.

Y. J. Zhang, X. W. Shu, R. F. Kan, Y. B. Cu, Y. He, S. Zhang, H. Geng, and W. Q. Liu, “An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method,” Spectrosc. Spect. Anal. 30, 1352–1356 (2010).

Jaeger, W.

D. Vujanic, W. Jaeger, and J. Tulip, “Effect of optical feedback on a VCSEL TDLAS,” Appl. Phys. B 99, 585–589 (2010).
[Crossref]

Joly, L.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Kan, R. F.

Y. J. Zhang, X. W. Shu, R. F. Kan, Y. B. Cu, Y. He, S. Zhang, H. Geng, and W. Q. Liu, “An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method,” Spectrosc. Spect. Anal. 30, 1352–1356 (2010).

Kim, S.

S. Kim, Y. Chung, and Y. T. Byun, “Tuning characteristics analysis of a widely tunable sampled grating distributed feedback laser diode integrated with a sampled grating distributed Bragg reflector,” J. Korean Phys. Soc. 52, 1036–1042 (2008).
[Crossref]

Korablev, O.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Lackner, M.

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
[Crossref]

Levinsky, H. B.

S. Gersen, A. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame 143, 333–336 (2005).
[Crossref]

Li, J. S.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Liu, W. Q.

Y. J. Zhang, X. W. Shu, R. F. Kan, Y. B. Cu, Y. He, S. Zhang, H. Geng, and W. Q. Liu, “An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method,” Spectrosc. Spect. Anal. 30, 1352–1356 (2010).

Liu, X.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Lynch, M.

V. Weldon, P. Pineda-Vadillo, M. Lynch, R. Phelan, and J. F. Donegan, “A novel discrete mode narrow linewidth laser diode for spectroscopic based gas sensing in the 1.5  μm region,” Appl. Phys. B 109, 433–440 (2012).
[Crossref]

Mayerhofer, M.

C. Erbel, M. Mayerhofer, P. Monkhouse, M. Gaderer, and H. Spliethoff, “Continuous in situ measurements of alkali species in the gasification of biomass,” Proc. Combust. Inst. 34, 2331–2338 (2013).
[Crossref]

Mokhov, A.

S. Gersen, A. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame 143, 333–336 (2005).
[Crossref]

Monkhouse, P.

C. Erbel, M. Mayerhofer, P. Monkhouse, M. Gaderer, and H. Spliethoff, “Continuous in situ measurements of alkali species in the gasification of biomass,” Proc. Combust. Inst. 34, 2331–2338 (2013).
[Crossref]

P. Monkhouse, “On-line spectroscopic and spectrometric methods for the determination of metal species in industrial processes,” Prog. Energy Combust. Sci. 37, 125–171 (2011).
[Crossref]

Mucke, R.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Parvitte, B.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Phelan, R.

V. Weldon, P. Pineda-Vadillo, M. Lynch, R. Phelan, and J. F. Donegan, “A novel discrete mode narrow linewidth laser diode for spectroscopic based gas sensing in the 1.5  μm region,” Appl. Phys. B 109, 433–440 (2012).
[Crossref]

Pineda-Vadillo, P.

V. Weldon, P. Pineda-Vadillo, M. Lynch, R. Phelan, and J. F. Donegan, “A novel discrete mode narrow linewidth laser diode for spectroscopic based gas sensing in the 1.5  μm region,” Appl. Phys. B 109, 433–440 (2012).
[Crossref]

Reid, D.

K. Shi, F. Smyth, P. M. Anandarajah, D. Reid, Y. L. Yu, and L. P. Barry, “Linewidth of SG-DBR laser and its effect on DPSK transmission,” Opt. Commun. 283, 5040–5045 (2010).
[Crossref]

Shi, K.

K. Shi, F. Smyth, P. M. Anandarajah, D. Reid, Y. L. Yu, and L. P. Barry, “Linewidth of SG-DBR laser and its effect on DPSK transmission,” Opt. Commun. 283, 5040–5045 (2010).
[Crossref]

Shu, X. W.

Y. J. Zhang, X. W. Shu, R. F. Kan, Y. B. Cu, Y. He, S. Zhang, H. Geng, and W. Q. Liu, “An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method,” Spectrosc. Spect. Anal. 30, 1352–1356 (2010).

Slemr, F.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Smyth, F.

K. Shi, F. Smyth, P. M. Anandarajah, D. Reid, Y. L. Yu, and L. P. Barry, “Linewidth of SG-DBR laser and its effect on DPSK transmission,” Opt. Commun. 283, 5040–5045 (2010).
[Crossref]

Spliethoff, H.

C. Erbel, M. Mayerhofer, P. Monkhouse, M. Gaderer, and H. Spliethoff, “Continuous in situ measurements of alkali species in the gasification of biomass,” Proc. Combust. Inst. 34, 2331–2338 (2013).
[Crossref]

Titov, A.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Tulip, J.

D. Vujanic, W. Jaeger, and J. Tulip, “Effect of optical feedback on a VCSEL TDLAS,” Appl. Phys. B 99, 585–589 (2010).
[Crossref]

Vinogradov, I.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Vujanic, D.

D. Vujanic, W. Jaeger, and J. Tulip, “Effect of optical feedback on a VCSEL TDLAS,” Appl. Phys. B 99, 585–589 (2010).
[Crossref]

Wagner, S.

V. Ebert, S. Wagner, B. T. Fisher, and J. W. Fleming, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[Crossref]

Weldon, V.

V. Weldon, P. Pineda-Vadillo, M. Lynch, R. Phelan, and J. F. Donegan, “A novel discrete mode narrow linewidth laser diode for spectroscopic based gas sensing in the 1.5  μm region,” Appl. Phys. B 109, 433–440 (2012).
[Crossref]

Werle, P.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Yu, Y. L.

K. Shi, F. Smyth, P. M. Anandarajah, D. Reid, Y. L. Yu, and L. P. Barry, “Linewidth of SG-DBR laser and its effect on DPSK transmission,” Opt. Commun. 283, 5040–5045 (2010).
[Crossref]

Zeninari, V.

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

Zhang, S.

Y. J. Zhang, X. W. Shu, R. F. Kan, Y. B. Cu, Y. He, S. Zhang, H. Geng, and W. Q. Liu, “An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method,” Spectrosc. Spect. Anal. 30, 1352–1356 (2010).

Zhang, Y. J.

Y. J. Zhang, X. W. Shu, R. F. Kan, Y. B. Cu, Y. He, S. Zhang, H. Geng, and W. Q. Liu, “An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method,” Spectrosc. Spect. Anal. 30, 1352–1356 (2010).

Appl. Phys. B (4)

V. Zeninari, G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, and M. Gerasimov, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010).
[Crossref]

D. Vujanic, W. Jaeger, and J. Tulip, “Effect of optical feedback on a VCSEL TDLAS,” Appl. Phys. B 99, 585–589 (2010).
[Crossref]

V. Weldon, P. Pineda-Vadillo, M. Lynch, R. Phelan, and J. F. Donegan, “A novel discrete mode narrow linewidth laser diode for spectroscopic based gas sensing in the 1.5  μm region,” Appl. Phys. B 109, 433–440 (2012).
[Crossref]

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Combust. Flame (1)

S. Gersen, A. Mokhov, and H. B. Levinsky, “Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames,” Combust. Flame 143, 333–336 (2005).
[Crossref]

J. Korean Phys. Soc. (1)

S. Kim, Y. Chung, and Y. T. Byun, “Tuning characteristics analysis of a widely tunable sampled grating distributed feedback laser diode integrated with a sampled grating distributed Bragg reflector,” J. Korean Phys. Soc. 52, 1036–1042 (2008).
[Crossref]

Opt. Commun. (1)

K. Shi, F. Smyth, P. M. Anandarajah, D. Reid, Y. L. Yu, and L. P. Barry, “Linewidth of SG-DBR laser and its effect on DPSK transmission,” Opt. Commun. 283, 5040–5045 (2010).
[Crossref]

Proc. Combust. Inst. (2)

C. Erbel, M. Mayerhofer, P. Monkhouse, M. Gaderer, and H. Spliethoff, “Continuous in situ measurements of alkali species in the gasification of biomass,” Proc. Combust. Inst. 34, 2331–2338 (2013).
[Crossref]

V. Ebert, S. Wagner, B. T. Fisher, and J. W. Fleming, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839–846 (2009).
[Crossref]

Prog. Energy Combust. Sci. (1)

P. Monkhouse, “On-line spectroscopic and spectrometric methods for the determination of metal species in industrial processes,” Prog. Energy Combust. Sci. 37, 125–171 (2011).
[Crossref]

Rev. Chem. Eng. (1)

M. Lackner, “Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—a review,” Rev. Chem. Eng. 23, 65–147 (2007).
[Crossref]

Spectrosc. Spect. Anal. (1)

Y. J. Zhang, X. W. Shu, R. F. Kan, Y. B. Cu, Y. He, S. Zhang, H. Geng, and W. Q. Liu, “An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method,” Spectrosc. Spect. Anal. 30, 1352–1356 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for TDLAS using an SG-DBR diode laser.

Fig. 2.
Fig. 2.

(a) DA signals and fitted baselines from the CO cell from channels 04 and 12, (b) the normalized DA signals and fitted signals from the corresponding channels, and (c) the difference (normalized noise) between the normalized signals and the fitted signals.

Fig. 3.
Fig. 3.

(a) DA signals and fitted baselines from the CO2 cell from channels 13 and 16, respectively, (b) the normalized DA signals and fitted signals from the corresponding channels, and (c) the difference (normalized noise) between the normalized signals and the fitted signals.

Fig. 4.
Fig. 4.

Comparison of measured α0 and calculated α0 from (a) CO and (b) CO2.

Fig. 5.
Fig. 5.

(a) 2f WMS signals and fitted data from the CO cell from channels 04 and 12 that address a transition in CO and (b) the residual from the raw signals and fitted signals.

Fig. 6.
Fig. 6.

(a) 2f WMS signals and fitted data from the CO2 cell from channels 13 and 16 that address a transition in CO2 and (b) the residual from the raw signals and fitted signals.

Tables (1)

Tables Icon

Table 1. Specification of the 18 Preprogrammed Channels of the In-tune Laser and Summary of the Analytical Signals from Either a Cell with 980 mbars of CO or 1005 mbars of CO2 Measured in DA and in Wavelength Modulation Absorption Spectroscopy

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(υ)=I0eα(υ)=I0eSχ(υ)nL,
I(υ)=(a+bυ+cυ2+dυ3+eυ4)eα(υ).
α0=Snlχ|υ=υ0.
α0=Snl1πδυ,
S=a(υ)[χ2(υυ¯a)+bχ1(υ,υ¯a)+χ3(υ,υ¯a)2],

Metrics