Abstract

Stable single frequency output around 943 nm was obtained from a quasi-continuous wave (qcw) diode-pumped, Q-switched Nd:GSAG laser. The Q-switched Nd:GSAG laser was injection seeded with a single mode laser diode. Its frequency was stabilized by an active-control loop specially designed for a strong qcw pump. The spectral linewidth of the Nd:GASG laser was 41 MHz and the frequency stability was 10 MHz. The single-frequency-pulsed laser generated 32 mJ pulse energy at 10 Hz repetition rate. When the repetition rate was increased to 100 Hz, 5.6 mJ pulse energy was obtained by a thermal dynamic stable resonator. By tuning the seed laser, the wavelength of the pulsed Nd:GASG laser can be continuously varied from 942.1 to 943.1 nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
    [CrossRef]
  2. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
    [CrossRef]
  3. P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.
  4. G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
    [CrossRef]
  5. Z. Chu, T. D. Wilkerson, and U. N. Singh, “Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser,” Appl. Opt. 32, 992–998 (1993).
    [CrossRef]
  6. F. Kallmeyer, A. Hermerschmidt, H. J. Eichler, and H. H. Klingenberg, “Injection seeding of a high energy Ti:sapphire laser for water vapor detection around 935 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper WB20.
  7. J. Löhring, K. Nicklaus, N. Kujath, and D. Hoffmann, “Diode pumped Nd:YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
    [CrossRef]
  8. K. He, Z. Wei, D. Li, Z. Zhang, H. Zhang, J. Wang, and C. Gao, “Diode-pumped quasi-three-level CW Nd:CLNGG and Nd:CNGG lasers,” Opt. Express 17, 19292–19297 (2009).
    [CrossRef]
  9. S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935  nm,” Opt. Commun. 275, 170–172 (2007).
  10. F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943 nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009).
    [CrossRef]
  11. F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
    [CrossRef]
  12. J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935  nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 71931Y (2009).
    [CrossRef]
  13. I. Freitag, R. Henking, A. Tünnermann, and H. Welling, “Quasi-three-level room-temperature Nd:YAG ring laser with high single-frequency output power at 946  nm,” Opt. Lett. 20, 2499–2501 (1995).
    [CrossRef]
  14. M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946  nm,” Opt. Commun. 194, 207–211 (2001).
    [CrossRef]
  15. G. Hollemann, E. Peik, A. Rusch, and H. Walther, “Injection locking of a diode-pumped Nd:YAG laser at 946  nm,” Opt. Lett. 20, 1871–1873 (1995).
    [CrossRef]
  16. J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
    [CrossRef]
  17. A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935  nm,” Appl. Phys. B 102, 905–915 (2011).
    [CrossRef]
  18. C. Xu, Z. Wei, Y. Zhang, D. Li, Z. Zhang, X. Wang, S. Wang, H. J. Eichler, C. Zhang, and C. Gao, “Diode-pumped passively mode-locked Nd:GSAG laser at 942  nm,” Opt. Lett. 34, 2324–2326 (2009).
    [CrossRef]
  19. Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942  nm,” Opt. Express 18, 6131–6136 (2010).
    [CrossRef]
  20. R. L. Schmitt and L. A. Rahn, “Diode-laser-pumped Nd:YAG laser injection seeding system,” Appl. Opt. 25, 629–633 (1986).
    [CrossRef]
  21. Z. Liu, S. Wu, and B. Liu, “Seed injection and frequency-locked Nd:YAG laser for direct detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007).
    [CrossRef]
  22. S. W. Henderson, E. H. Yuen, and E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
    [CrossRef]
  23. M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (1997), pp. 362–363.
  24. T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35-ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046–3050 (2001).
    [CrossRef]
  25. J. Zhou, H. Zang, T. Yu, J. Liu, and W. Chen, “Development of single-frequency laser for direct-detection wind lidar,” Proc. SPIE 6681, 66810R (2007).
    [CrossRef]
  26. F. Kallmeyer, “Wavelength controlled solid state lasers with high output pulse energy,” Ph.D. dissertation (Der Fakultät II Mathematik und Naturwissenschaften, der TU Berlin, 2008).
  27. T. Schröder, C. Lemmerz, O. Reitebuch, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
    [CrossRef]
  28. HITRAN Database, http://cfa-www.harvard.edu/HITRAN .

2011

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935  nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

2010

2009

C. Xu, Z. Wei, Y. Zhang, D. Li, Z. Zhang, X. Wang, S. Wang, H. J. Eichler, C. Zhang, and C. Gao, “Diode-pumped passively mode-locked Nd:GSAG laser at 942  nm,” Opt. Lett. 34, 2324–2326 (2009).
[CrossRef]

J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935  nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 71931Y (2009).
[CrossRef]

K. He, Z. Wei, D. Li, Z. Zhang, H. Zhang, J. Wang, and C. Gao, “Diode-pumped quasi-three-level CW Nd:CLNGG and Nd:CNGG lasers,” Opt. Express 17, 19292–19297 (2009).
[CrossRef]

F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943 nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009).
[CrossRef]

2007

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935  nm,” Opt. Commun. 275, 170–172 (2007).

Z. Liu, S. Wu, and B. Liu, “Seed injection and frequency-locked Nd:YAG laser for direct detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007).
[CrossRef]

J. Löhring, K. Nicklaus, N. Kujath, and D. Hoffmann, “Diode pumped Nd:YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[CrossRef]

J. Zhou, H. Zang, T. Yu, J. Liu, and W. Chen, “Development of single-frequency laser for direct-detection wind lidar,” Proc. SPIE 6681, 66810R (2007).
[CrossRef]

T. Schröder, C. Lemmerz, O. Reitebuch, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

2001

T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35-ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046–3050 (2001).
[CrossRef]

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946  nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

1998

V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

1995

1993

1986

Alpers, M.

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935  nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

Bagayev, S. N.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946  nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

Bauer, H.

P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.

Baumert, T.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

Bechker, P.

J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935  nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 71931Y (2009).
[CrossRef]

Behrendt, A.

P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.

Belkin, A. M.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946  nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

Bösenberg, J.

Browell, E. V.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

Chen, W.

J. Zhou, H. Zang, T. Yu, J. Liu, and W. Chen, “Development of single-frequency laser for direct-detection wind lidar,” Proc. SPIE 6681, 66810R (2007).
[CrossRef]

Chu, Z.

Czeranowsky, C.

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935  nm,” Opt. Commun. 275, 170–172 (2007).

di Girolamo, P.

P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.

Dziedzina, M.

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

Ehret, G.

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935  nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.

Eichler, H. J.

Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942  nm,” Opt. Express 18, 6131–6136 (2010).
[CrossRef]

C. Xu, Z. Wei, Y. Zhang, D. Li, Z. Zhang, X. Wang, S. Wang, H. J. Eichler, C. Zhang, and C. Gao, “Diode-pumped passively mode-locked Nd:GSAG laser at 942  nm,” Opt. Lett. 34, 2324–2326 (2009).
[CrossRef]

F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943 nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935  nm,” Opt. Commun. 275, 170–172 (2007).

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

F. Kallmeyer, A. Hermerschmidt, H. J. Eichler, and H. H. Klingenberg, “Injection seeding of a high energy Ti:sapphire laser for water vapor detection around 935 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper WB20.

Fix, A.

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935  nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

Freitag, I.

Fry, E. S.

Gao, C.

Grant, W. B.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

He, K.

Heddrich, W.

J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935  nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 71931Y (2009).
[CrossRef]

Henderson, S. W.

Henking, R.

Hermerschmidt, A.

F. Kallmeyer, A. Hermerschmidt, H. J. Eichler, and H. H. Klingenberg, “Injection seeding of a high energy Ti:sapphire laser for water vapor detection around 935 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper WB20.

Hoffmann, D.

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935  nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935  nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 71931Y (2009).
[CrossRef]

J. Löhring, K. Nicklaus, N. Kujath, and D. Hoffmann, “Diode pumped Nd:YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[CrossRef]

Hollemann, G.

Huber, G.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935  nm,” Opt. Commun. 275, 170–172 (2007).

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

Ileri, B.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935  nm,” Opt. Commun. 275, 170–172 (2007).

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

Ismail, S.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

Kallmeyer, F.

Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942  nm,” Opt. Express 18, 6131–6136 (2010).
[CrossRef]

F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943 nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009).
[CrossRef]

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

F. Kallmeyer, A. Hermerschmidt, H. J. Eichler, and H. H. Klingenberg, “Injection seeding of a high energy Ti:sapphire laser for water vapor detection around 935 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper WB20.

F. Kallmeyer, “Wavelength controlled solid state lasers with high output pulse energy,” Ph.D. dissertation (Der Fakultät II Mathematik und Naturwissenschaften, der TU Berlin, 2008).

Kiemle, C.

P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.

Klingenberg, H. H.

F. Kallmeyer, A. Hermerschmidt, H. J. Eichler, and H. H. Klingenberg, “Injection seeding of a high energy Ti:sapphire laser for water vapor detection around 935 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper WB20.

Kujath, N.

J. Löhring, K. Nicklaus, N. Kujath, and D. Hoffmann, “Diode pumped Nd:YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[CrossRef]

Larsen, M. P.

T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35-ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046–3050 (2001).
[CrossRef]

M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (1997), pp. 362–363.

Lemmerz, C.

T. Schröder, C. Lemmerz, O. Reitebuch, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

Li, D.

Lin, Z.

Liu, B.

Z. Liu, S. Wu, and B. Liu, “Seed injection and frequency-locked Nd:YAG laser for direct detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007).
[CrossRef]

Liu, J.

J. Zhou, H. Zang, T. Yu, J. Liu, and W. Chen, “Development of single-frequency laser for direct-detection wind lidar,” Proc. SPIE 6681, 66810R (2007).
[CrossRef]

Liu, Z.

Z. Liu, S. Wu, and B. Liu, “Seed injection and frequency-locked Nd:YAG laser for direct detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007).
[CrossRef]

Löhring, J.

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935  nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935  nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 71931Y (2009).
[CrossRef]

J. Löhring, K. Nicklaus, N. Kujath, and D. Hoffmann, “Diode pumped Nd:YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[CrossRef]

Mayer, B.

P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.

Meissner, A.

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935  nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 71931Y (2009).
[CrossRef]

Morasch, V.

J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935  nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 71931Y (2009).
[CrossRef]

Nicklaus, K.

J. Löhring, K. Nicklaus, N. Kujath, and D. Hoffmann, “Diode pumped Nd:YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[CrossRef]

Okhapkin, M. V.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946  nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

Peik, E.

Petermann, K.

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935  nm,” Opt. Commun. 275, 170–172 (2007).

Poberaj, G.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

Rahn, L. A.

Reitebuch, O.

T. Schröder, C. Lemmerz, O. Reitebuch, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

Rusch, A.

Schmitt, R. L.

Schröder, T.

T. Schröder, C. Lemmerz, O. Reitebuch, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

Singh, U. N.

Skvortsov, M. N.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946  nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

Strohmaier, S. G. P.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935  nm,” Opt. Commun. 275, 170–172 (2007).

Summa, D.

P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.

Thomas, E.

M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (1997), pp. 362–363.

Treichel, R.

T. Schröder, C. Lemmerz, O. Reitebuch, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

Tünnermann, A.

Walther, H.

Walther, T.

T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35-ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046–3050 (2001).
[CrossRef]

M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (1997), pp. 362–363.

Wang, J.

Wang, S.

Wang, X.

Z. Lin, X. Wang, F. Kallmeyer, H. J. Eichler, and C. Gao, “Single frequency operation of a tunable injection-seeded Nd:GSAG Q-switched laser around 942  nm,” Opt. Express 18, 6131–6136 (2010).
[CrossRef]

C. Xu, Z. Wei, Y. Zhang, D. Li, Z. Zhang, X. Wang, S. Wang, H. J. Eichler, C. Zhang, and C. Gao, “Diode-pumped passively mode-locked Nd:GSAG laser at 942  nm,” Opt. Lett. 34, 2324–2326 (2009).
[CrossRef]

F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943 nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009).
[CrossRef]

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

Wei, Z.

Weiss, V.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

Welling, H.

Wilkerson, T. D.

Wirth, M.

P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.

Wu, S.

Z. Liu, S. Wu, and B. Liu, “Seed injection and frequency-locked Nd:YAG laser for direct detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007).
[CrossRef]

Wührer, C.

T. Schröder, C. Lemmerz, O. Reitebuch, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

Wulfmeyer, V.

V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[CrossRef]

P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.

Xu, C.

Yu, T.

J. Zhou, H. Zang, T. Yu, J. Liu, and W. Chen, “Development of single-frequency laser for direct-detection wind lidar,” Proc. SPIE 6681, 66810R (2007).
[CrossRef]

Yuen, E. H.

Zang, H.

J. Zhou, H. Zang, T. Yu, J. Liu, and W. Chen, “Development of single-frequency laser for direct-detection wind lidar,” Proc. SPIE 6681, 66810R (2007).
[CrossRef]

Zhang, C.

Zhang, H.

Zhang, Y.

Zhang, Z.

Zhou, J.

J. Zhou, H. Zang, T. Yu, J. Liu, and W. Chen, “Development of single-frequency laser for direct-detection wind lidar,” Proc. SPIE 6681, 66810R (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

T. Schröder, C. Lemmerz, O. Reitebuch, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87, 437–444 (2007).
[CrossRef]

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere,” Appl. Phys. B 67, 427–431 (1998).
[CrossRef]

F. Kallmeyer, M. Dziedzina, X. Wang, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Nd:GSAG-pulsed laser operation at 943  nm and crystal growth,” Appl. Phys. B 89, 305–310 (2007).
[CrossRef]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[CrossRef]

A. Fix, G. Ehret, J. Löhring, D. Hoffmann, and M. Alpers, “Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935  nm,” Appl. Phys. B 102, 905–915 (2011).
[CrossRef]

Opt. Commun.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 946  nm,” Opt. Commun. 194, 207–211 (2001).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935  nm,” Opt. Commun. 275, 170–172 (2007).

Opt. Express

Opt. Laser Technol.

Z. Liu, S. Wu, and B. Liu, “Seed injection and frequency-locked Nd:YAG laser for direct detection wind lidar,” Opt. Laser Technol. 39, 541–545 (2007).
[CrossRef]

Opt. Lett.

Proc. SPIE

J. Löhring, A. Meissner, V. Morasch, P. Bechker, W. Heddrich, and D. Hoffmann, “Single-frequency Nd:YGG laser at 935  nm for future water-vapor DIAL systems,” Proc. SPIE 7193, 71931Y (2009).
[CrossRef]

F. Kallmeyer, X. Wang, and H. J. Eichler, “Tunable Nd:GSAG laser around 943 nm for water vapor detection,” Proc. SPIE 7131, 713111 (2009).
[CrossRef]

J. Löhring, K. Nicklaus, N. Kujath, and D. Hoffmann, “Diode pumped Nd:YGG laser for direct generation of pulsed 935 nm radiation for water vapour measurements,” Proc. SPIE 6451, 64510I (2007).
[CrossRef]

J. Zhou, H. Zang, T. Yu, J. Liu, and W. Chen, “Development of single-frequency laser for direct-detection wind lidar,” Proc. SPIE 6681, 66810R (2007).
[CrossRef]

Other

F. Kallmeyer, “Wavelength controlled solid state lasers with high output pulse energy,” Ph.D. dissertation (Der Fakultät II Mathematik und Naturwissenschaften, der TU Berlin, 2008).

HITRAN Database, http://cfa-www.harvard.edu/HITRAN .

M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (1997), pp. 362–363.

P. di Girolamo, D. Summa, H. Bauer, V. Wulfmeyer, A. Behrendt, G. Ehret, B. Mayer, M. Wirth, and C. Kiemle, “Simulation of the performance of Wales based on an end-to-end model,” in Proceedings of the 22nd International Laser Radar Conference (2004), pp. 957–960.

F. Kallmeyer, A. Hermerschmidt, H. J. Eichler, and H. H. Klingenberg, “Injection seeding of a high energy Ti:sapphire laser for water vapor detection around 935 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper WB20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic diagram of the injection-seeded Nd:GSAG laser.

Fig. 2.
Fig. 2.

Temporal sequence of the active control technique.

Fig. 3.
Fig. 3.

Pulse energy at 10 Hz versus absorbed pump energy for a 2 m symmetric laser resonator.

Fig. 4.
Fig. 4.

Beam profile and the beam quality measurement result.

Fig. 5.
Fig. 5.

Laser pulses of the Q-switched Nd:GSAG laser. The laser was operated in the free-running mode and injection-seeding mode.

Fig. 6.
Fig. 6.

Stability range (upper) and cavity mode (lower) of a 1.50 m plane–concave cavity.

Fig. 7.
Fig. 7.

Output power and beam waist radius inside the Nd:GSAG crystal of the single frequency laser, at different pump powers. The calculated results are shown as lines.

Fig. 8.
Fig. 8.

FPI interference fringes. Q-switched Nd:GSAG laser without injection seeding (left). Stable single frequency Nd:GSAG laser (right).

Fig. 9.
Fig. 9.

CCD scan of FPI interference fringes of the single frequency Nd:GSAG laser. The spectral linewidth was calculated by Gaussian fit of the intensity distribution.

Fig. 10.
Fig. 10.

CCD scan of FPI interference fringes of the 102 Hz single frequency Nd:GSAG laser.

Fig. 11.
Fig. 11.

Wavelength measurement of the single frequency Nd:GSAG laser. The black line shows the wavelength of the laser with injection seeding but cavity control and the gray line is the wavelength with cavity control.

Fig. 12.
Fig. 12.

Frequency stability of a 10 Hz laser. Upper: time behavior of the short-term frequency fluctuations recorded shot-to-shot. Lower: histogram of the measured central frequency distribution with a bin size of 0.5 MHz.

Fig. 13.
Fig. 13.

Frequency stability of the 102 Hz laser. Upper: time behavior of the short-term frequency fluctuations recorded shot-to-shot. Lower: histogram of the measured central frequency distribution with a bin size of 0.5 MHz.

Fig. 14.
Fig. 14.

Wavelength tuning curve of the injection-seeded Nd:GSAG laser.

Tables (3)

Tables Icon

Table 1. Requirements of Laser Transmitter for Water Vapor DIAL

Tables Icon

Table 2. Properties of DFB Seed Laser

Tables Icon

Table 3. Properties of Single Frequency Nd:GSAG Laser

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δvv=2r·ΔrΔr2/22f2r2r·Δrf2.

Metrics