Abstract

We present a spectrometer and scanner based on optofluidic configurations. The main optical component of the spectrometer is a compound optical element consisting of an optofluidic lens and standard blazed diffraction grating. The spectrum size can be changed by filling the lens cavity with different liquids. The scanner comprises two hollow 45° angle prisms oriented at 90° to each other. By changing the liquid inside the prisms, two-dimensional light beam scanning can be performed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [CrossRef]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
    [CrossRef]
  3. N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics 4, 031501 (2010).
    [CrossRef]
  4. N. Chronis, G. L. Liu, K.-H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003).
    [CrossRef]
  5. H.-Y. Lin, Y.-H. Ho, J.-H Le, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficient improvement of small pixelated organic light emitting devices,” Opt. Express 16, 11044–11051 (2008).
    [CrossRef]
  6. O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic device,” Sens. Actuators 78, 149–159 (1999).
    [CrossRef]
  7. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33, 548–550 (2008).
    [CrossRef]
  8. C. Grillet, P. Domachuck, V. Ta’eed, E. Magi, J. Bolger, B. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440–5447 (2004).
    [CrossRef]
  9. H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. concepts and implementations,” Microfluid. Nanofluid. 4, 1–24 (2008).
    [CrossRef]
  10. Z. Li and D. Psaltis, “Optofludic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2007).
    [CrossRef]
  11. H. Ren and S.-T. Wu, “Variable focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
    [CrossRef]
  12. A. Werber and H. Zappe, “Tunable microfluidic microlens,” Appl. Opt. 44, 3238–3245 (2005).
    [CrossRef]
  13. S. Hu, H. Ren, Y.-J. Lin, M. G. J. Moharam, S.-T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photopolymer,” Opt. Express 17, 17590–17595 (2009).
    [CrossRef]
  14. S. Kuiper and B. H. W. Hendricks, “Variable focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  15. F. T. Sai, S. H. Cho, Y.-H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33, 291–293 (2008).
    [CrossRef]
  16. S. Calixto, M. Rosete-Aguilar, D. Monzon, and V. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47, 843–848 (2008).
    [CrossRef]
  17. S. Calixto, F. Sanchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47, 6580–6585 (2008).
    [CrossRef]
  18. S. Calixto, F. Sanchez-Marin, and M. E. Sanchez-Morales, “Pressure measurements through image analysis,” Opt. Express 17, 17996–18002 (2009).
    [CrossRef]
  19. X. Heng, D. Erickson, L. R. Baugh, S. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6, 1274–1276 (2006).
    [CrossRef]
  20. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psalis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
    [CrossRef]
  21. S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
    [CrossRef]
  22. P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11, 899–904 (2011).
    [CrossRef]
  23. D. Ozcelik, B. S. Phillips, J. W. Parks, P. Measor, D. Gulbransen, A. R. Hawkins, and H. Schmidt, “Dual core optofluidic chip for independent particle detection and tunable spectral filtering,” Lab Chip 12, 3728–3733 (2012).
    [CrossRef]
  24. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5, 234–238 (2011).
    [CrossRef]
  25. C. Song, N.-T. Nguyen, A. K. Asundi, and S.-H. Tan, “Biconcave micro-optofluidic lens with low-refractive-index liquids,” Opt. Lett. 35, 327–329 (2010).
    [CrossRef]
  26. S. Calixto, M. E. Sanchez-Morales, F. J. Sanchez-Marin, M. Rosete-Aguilar, A. Martinez-Richa, and K. A. Barrera-Rivera, “Optofluidic varible focus lenses,” Appl. Opt. 48, 2308–2311 (2009).
    [CrossRef]
  27. S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, M. Calixto-Solano, and C. López-Mariscal, “Refractive index measurements through image analysis with an optofluidic device,” Opt. Express 20, 2073–2080 (2012).
    [CrossRef]
  28. W. Zhang, K. Aljasen, H. Zappe, and A. Seifert, “Completely integrated, thermopneumatically tunable microlens,” Opt. Express 19, 2347–2362 (2011).
    [CrossRef]
  29. S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, O. L. Torres-Rocha, E. M. Martinez-Prado, and M. Calixto-Solano, “Optofluidic compound lenses made with ionic liquids,” in Applications of Ionic Liquids in Science and Technology, S. Handy, ed. (InTech, 2011), Chap. 23.
  30. D. A. Zauner, A. M. Jorgensen, T. A. Anhoj, and J. Hubner, “Concave reflective SU-8 photoresist gratings for flat field integrated spectrometer,” Appl. Opt. 45, 5877–5880 (2006).
    [CrossRef]
  31. E. G. Loewen and E. Popov, Diffration Gratings and Aplications (Marcel Dekker, 1997).
  32. Ocean optics miniature USB4000 fiber optic spectrometer, www.oceanoptics.com .
  33. CCD linear image sensor, part number TCD 121 dg., www.toshiba.com/taec/catalog .
  34. L. Beiser and R. B. Johnson, “Scanners,” in Handbook of OpticsM. Bass, ed. (McGraw-Hill, 1994), Vol. 2, Chap. 19.
  35. L. Beiser, Holographic Scanning (Wiley, 1988).
  36. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39, 6545–6555 (2000).
    [CrossRef]
  37. C. Song, N. T. Nguyen, A. K. Asundi, and S. H. Tan, “Tunable micro-optofluidic prisms based on liquid-core liquid-cladding configuration,” Opt. Lett. 35, 327–329 (2010).
    [CrossRef]
  38. J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998).
  39. J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).
  40. S.-B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965–4971 (2008).
    [CrossRef]
  41. D. Dumas, M. Fendler, N. Baier, J. Primot, and E. le Coarer, “Curved focal plane detector array for wide field cameras,” Appl. Opt. 51, 5419–5424 (2012).
    [CrossRef]

2012 (3)

2011 (4)

W. Zhang, K. Aljasen, H. Zappe, and A. Seifert, “Completely integrated, thermopneumatically tunable microlens,” Opt. Express 19, 2347–2362 (2011).
[CrossRef]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5, 234–238 (2011).
[CrossRef]

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[CrossRef]

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11, 899–904 (2011).
[CrossRef]

2010 (3)

2009 (3)

2008 (8)

2007 (3)

Z. Li and D. Psaltis, “Optofludic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

H. Ren and S.-T. Wu, “Variable focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[CrossRef]

2006 (3)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

X. Heng, D. Erickson, L. R. Baugh, S. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6, 1274–1276 (2006).
[CrossRef]

D. A. Zauner, A. M. Jorgensen, T. A. Anhoj, and J. Hubner, “Concave reflective SU-8 photoresist gratings for flat field integrated spectrometer,” Appl. Opt. 45, 5877–5880 (2006).
[CrossRef]

2005 (1)

2004 (2)

2003 (1)

2000 (1)

1999 (1)

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic device,” Sens. Actuators 78, 149–159 (1999).
[CrossRef]

Aljasen, K.

Anhoj, T. A.

Asundi, A. K.

Awwal, A. A. S.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).

Baier, N.

Barrera-Rivera, K. A.

Baugh, L. R.

X. Heng, D. Erickson, L. R. Baugh, S. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6, 1274–1276 (2006).
[CrossRef]

Beiser, L.

L. Beiser and R. B. Johnson, “Scanners,” in Handbook of OpticsM. Bass, ed. (McGraw-Hill, 1994), Vol. 2, Chap. 19.

L. Beiser, Holographic Scanning (Wiley, 1988).

Bolger, J.

Brittain, S. T.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic device,” Sens. Actuators 78, 149–159 (1999).
[CrossRef]

Calixto, S.

Calixto-Solano, M.

S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, M. Calixto-Solano, and C. López-Mariscal, “Refractive index measurements through image analysis with an optofluidic device,” Opt. Express 20, 2073–2080 (2012).
[CrossRef]

S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, O. L. Torres-Rocha, E. M. Martinez-Prado, and M. Calixto-Solano, “Optofluidic compound lenses made with ionic liquids,” in Applications of Ionic Liquids in Science and Technology, S. Handy, ed. (InTech, 2011), Chap. 23.

Catrysse, P. B.

Chen, A.

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11, 899–904 (2011).
[CrossRef]

Chen, K.-Y.

Cho, S. H.

Chronis, N.

Cooper-White, J.

Cuennet, J. G.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5, 234–238 (2011).
[CrossRef]

Cui, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psalis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[CrossRef]

De Sio, L.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5, 234–238 (2011).
[CrossRef]

Dinyari, R.

Domachuck, P.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Duffy, D. C.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic device,” Sens. Actuators 78, 149–159 (1999).
[CrossRef]

Dumas, D.

Eggleton, B.

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Erickson, D.

X. Heng, D. Erickson, L. R. Baugh, S. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6, 1274–1276 (2006).
[CrossRef]

Fang, J.-H.

Feiwen, L.

Fendler, M.

Grillet, C.

Guangya, Z.

Gulbransen, D.

D. Ozcelik, B. S. Phillips, J. W. Parks, P. Measor, D. Gulbransen, A. R. Hawkins, and H. Schmidt, “Dual core optofluidic chip for independent particle detection and tunable spectral filtering,” Lab Chip 12, 3728–3733 (2012).
[CrossRef]

Han, C.

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[CrossRef]

Hardy, J.

J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998).

Hawkins, A.

H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. concepts and implementations,” Microfluid. Nanofluid. 4, 1–24 (2008).
[CrossRef]

Hawkins, A. R.

D. Ozcelik, B. S. Phillips, J. W. Parks, P. Measor, D. Gulbransen, A. R. Hawkins, and H. Schmidt, “Dual core optofluidic chip for independent particle detection and tunable spectral filtering,” Lab Chip 12, 3728–3733 (2012).
[CrossRef]

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11, 899–904 (2011).
[CrossRef]

Hendricks, B. H. W.

S. Kuiper and B. H. W. Hendricks, “Variable focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Heng, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psalis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[CrossRef]

X. Heng, D. Erickson, L. R. Baugh, S. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6, 1274–1276 (2006).
[CrossRef]

Ho, Y.-H.

Hongbin, Y.

Hsu, S.-C.

Hu, S.

Huang, K.

Hubner, J.

Jeong, K.-H.

Johnson, R. B.

L. Beiser and R. B. Johnson, “Scanners,” in Handbook of OpticsM. Bass, ed. (McGraw-Hill, 1994), Vol. 2, Chap. 19.

Jorgensen, A. M.

Kuiper, S.

S. Kuiper and B. H. W. Hendricks, “Variable focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Le, J.-H

le Coarer, E.

Lee, L. M.

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[CrossRef]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psalis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[CrossRef]

Lee, L. P.

Li, Z.

Z. Li and D. Psaltis, “Optofludic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2007).
[CrossRef]

Lin, H.-Y.

Lin, J.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).

Lin, Y.-J.

Liu, G. L.

Lo, Y.-H.

Loewen, E. G.

E. G. Loewen and E. Popov, Diffration Gratings and Aplications (Marcel Dekker, 1997).

López-Mariscal, C.

Magi, E.

Maker, P.

Martinez-Prado, E. M.

S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, O. L. Torres-Rocha, E. M. Martinez-Prado, and M. Calixto-Solano, “Optofluidic compound lenses made with ionic liquids,” in Applications of Ionic Liquids in Science and Technology, S. Handy, ed. (InTech, 2011), Chap. 23.

Martinez-Richa, A.

Measor, P.

D. Ozcelik, B. S. Phillips, J. W. Parks, P. Measor, D. Gulbransen, A. R. Hawkins, and H. Schmidt, “Dual core optofluidic chip for independent particle detection and tunable spectral filtering,” Lab Chip 12, 3728–3733 (2012).
[CrossRef]

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11, 899–904 (2011).
[CrossRef]

Minkovich, V.

Moharam, M. G. J.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Monzon, D.

Muller, R.

Nguyen, N. T.

Nguyen, N.-T.

Ozcelik, D.

D. Ozcelik, B. S. Phillips, J. W. Parks, P. Measor, D. Gulbransen, A. R. Hawkins, and H. Schmidt, “Dual core optofluidic chip for independent particle detection and tunable spectral filtering,” Lab Chip 12, 3728–3733 (2012).
[CrossRef]

Pang, S.

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[CrossRef]

Parks, J. W.

D. Ozcelik, B. S. Phillips, J. W. Parks, P. Measor, D. Gulbransen, A. R. Hawkins, and H. Schmidt, “Dual core optofluidic chip for independent particle detection and tunable spectral filtering,” Lab Chip 12, 3728–3733 (2012).
[CrossRef]

Peumans, P.

Phillips, B. S.

D. Ozcelik, B. S. Phillips, J. W. Parks, P. Measor, D. Gulbransen, A. R. Hawkins, and H. Schmidt, “Dual core optofluidic chip for independent particle detection and tunable spectral filtering,” Lab Chip 12, 3728–3733 (2012).
[CrossRef]

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11, 899–904 (2011).
[CrossRef]

Popov, E.

E. G. Loewen and E. Popov, Diffration Gratings and Aplications (Marcel Dekker, 1997).

Porter, J.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).

Primot, J.

Psalis, D.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psalis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[CrossRef]

Psaltis, D.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5, 234–238 (2011).
[CrossRef]

Z. Li and D. Psaltis, “Optofludic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2007).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

X. Heng, D. Erickson, L. R. Baugh, S. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6, 1274–1276 (2006).
[CrossRef]

X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39, 6545–6555 (2000).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Queener, H.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).

Ren, H.

Rim, S.-B.

Rodd, L.

Rogers, J. A.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic device,” Sens. Actuators 78, 149–159 (1999).
[CrossRef]

Rosete-Aguilar, M.

Sai, F. T.

Sanchez-Marin, F.

Sanchez-Marin, F. J.

Sanchez-Morales, M. E.

Schmidt, H.

D. Ozcelik, B. S. Phillips, J. W. Parks, P. Measor, D. Gulbransen, A. R. Hawkins, and H. Schmidt, “Dual core optofluidic chip for independent particle detection and tunable spectral filtering,” Lab Chip 12, 3728–3733 (2012).
[CrossRef]

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11, 899–904 (2011).
[CrossRef]

H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. concepts and implementations,” Microfluid. Nanofluid. 4, 1–24 (2008).
[CrossRef]

Schueller, O. J. A.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic device,” Sens. Actuators 78, 149–159 (1999).
[CrossRef]

Seifert, A.

Siong, C. F.

Song, C.

Sternberg, P. W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psalis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[CrossRef]

X. Heng, D. Erickson, L. R. Baugh, S. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6, 1274–1276 (2006).
[CrossRef]

Ta’eed, V.

Tabiryan, N.

Tan, S. H.

Tan, S.-H.

Thorn, K.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).

Torres-Rocha, O. L.

S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, O. L. Torres-Rocha, E. M. Martinez-Prado, and M. Calixto-Solano, “Optofluidic compound lenses made with ionic liquids,” in Applications of Ionic Liquids in Science and Technology, S. Handy, ed. (InTech, 2011), Chap. 23.

Tsai, J.-H.

Vasdekis, A. E.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5, 234–238 (2011).
[CrossRef]

Vasko, B.

Vasko, J.

Wang, X.

Wei, M.-K.

Werber, A.

Whitesides, G. M.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic device,” Sens. Actuators 78, 149–159 (1999).
[CrossRef]

Wilson, D.

Wu, S.-T.

Wu, T.-C.

Yang, C.

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[CrossRef]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psalis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

X. Heng, D. Erickson, L. R. Baugh, S. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6, 1274–1276 (2006).
[CrossRef]

Yaqoob, S.

X. Heng, D. Erickson, L. R. Baugh, S. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6, 1274–1276 (2006).
[CrossRef]

Zappe, H.

Zauner, D. A.

Zhang, W.

Zhong, W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psalis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

S. Kuiper and B. H. W. Hendricks, “Variable focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Biomicrofluidics (1)

N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics 4, 031501 (2010).
[CrossRef]

Lab Chip (4)

X. Heng, D. Erickson, L. R. Baugh, S. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy—a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6, 1274–1276 (2006).
[CrossRef]

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope,” Lab Chip 11, 3698–3702 (2011).
[CrossRef]

P. Measor, B. S. Phillips, A. Chen, A. R. Hawkins, and H. Schmidt, “Tailorable integrated optofluidic filters for biomolecular detection,” Lab Chip 11, 899–904 (2011).
[CrossRef]

D. Ozcelik, B. S. Phillips, J. W. Parks, P. Measor, D. Gulbransen, A. R. Hawkins, and H. Schmidt, “Dual core optofluidic chip for independent particle detection and tunable spectral filtering,” Lab Chip 12, 3728–3733 (2012).
[CrossRef]

Microfluid. Nanofluid. (2)

H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. concepts and implementations,” Microfluid. Nanofluid. 4, 1–24 (2008).
[CrossRef]

Z. Li and D. Psaltis, “Optofludic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2007).
[CrossRef]

Nat. Photonics (2)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5, 234–238 (2011).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Opt. Express (9)

S. Hu, H. Ren, Y.-J. Lin, M. G. J. Moharam, S.-T. Wu, and N. Tabiryan, “Adaptive liquid lens actuated by photopolymer,” Opt. Express 17, 17590–17595 (2009).
[CrossRef]

S. Calixto, F. Sanchez-Marin, and M. E. Sanchez-Morales, “Pressure measurements through image analysis,” Opt. Express 17, 17996–18002 (2009).
[CrossRef]

S.-B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965–4971 (2008).
[CrossRef]

H.-Y. Lin, Y.-H. Ho, J.-H Le, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficient improvement of small pixelated organic light emitting devices,” Opt. Express 16, 11044–11051 (2008).
[CrossRef]

W. Zhang, K. Aljasen, H. Zappe, and A. Seifert, “Completely integrated, thermopneumatically tunable microlens,” Opt. Express 19, 2347–2362 (2011).
[CrossRef]

S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, M. Calixto-Solano, and C. López-Mariscal, “Refractive index measurements through image analysis with an optofluidic device,” Opt. Express 20, 2073–2080 (2012).
[CrossRef]

N. Chronis, G. L. Liu, K.-H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003).
[CrossRef]

C. Grillet, P. Domachuck, V. Ta’eed, E. Magi, J. Bolger, B. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440–5447 (2004).
[CrossRef]

H. Ren and S.-T. Wu, “Variable focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[CrossRef]

Opt. Lett. (4)

Proc. Natl. Acad. Sci. USA (1)

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psalis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. USA 105, 10670–10675 (2008).
[CrossRef]

Sens. Actuators (1)

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic device,” Sens. Actuators 78, 149–159 (1999).
[CrossRef]

Other (8)

S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, O. L. Torres-Rocha, E. M. Martinez-Prado, and M. Calixto-Solano, “Optofluidic compound lenses made with ionic liquids,” in Applications of Ionic Liquids in Science and Technology, S. Handy, ed. (InTech, 2011), Chap. 23.

E. G. Loewen and E. Popov, Diffration Gratings and Aplications (Marcel Dekker, 1997).

Ocean optics miniature USB4000 fiber optic spectrometer, www.oceanoptics.com .

CCD linear image sensor, part number TCD 121 dg., www.toshiba.com/taec/catalog .

L. Beiser and R. B. Johnson, “Scanners,” in Handbook of OpticsM. Bass, ed. (McGraw-Hill, 1994), Vol. 2, Chap. 19.

L. Beiser, Holographic Scanning (Wiley, 1988).

J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998).

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science (Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

AFM image of (a) a master and (b) a silicone grating. Profile of (c) a master and (d) a silicone replica blazed grating.

Fig. 2.
Fig. 2.

Spectra of an Hg lamp given by (a) a master and (b) a replica blazed grating. Spectra of sodium D lines given by (c) the master and (d) the replica grating.

Fig. 3.
Fig. 3.

Characteristics of a lens embedded in silicone (n=1.412).

Fig. 4.
Fig. 4.

Behavior of back focal distance as a function of the liquid refractive index in the cavity of the optofluidic lens shown in Fig. 3. Crosses represent experimental data; triangles show theoretical data.

Fig. 5.
Fig. 5.

Diagrams showing the behavior of a compound element when (a) bromonaphthalene and (b) cyclohexanol are used to fill the lens cavity. (c) Diagram of a Littrow configuration composing the compound optofluidic element. The liquid in the lens was bromonaphthalene.

Fig. 6.
Fig. 6.

Diagram of the configuration used to test the optofluidic element lens and diffraction grating.

Fig. 7.
Fig. 7.

(a) Hg spectral lines given by the compound optofluidic element when the cavity is filled with bromonaphthalene. Notice that the doublet of yellow lines is in focus, whereas the other lines are not. (b) Spectral lines when the cavity is filled with cyclohexanol. Note that all of the lines are in focus.

Fig. 8.
Fig. 8.

Hg spectral lines given by the compound optofluidic element. A reticle was superimposed in the focal plane of the lens to measure the width of the lines. Minimum distance in the scale is 100 μm.

Fig. 9.
Fig. 9.

Diagram showing the position of the two hollow prisms in the silicone square. The hollow prism size was 7mm×7mm×10mm.

Fig. 10.
Fig. 10.

(a) Light path in the silicone square and hollow prism and (b) dispersion of light beams given by an optical design program.

Fig. 11.
Fig. 11.

Light beam deflected by a hollow prism filled with immersion oil.

Fig. 12.
Fig. 12.

Optical configuration used to perform the scanning. The silicone square has two prisms, as shown in Fig. 9. X, Y, and Z axes are shown.

Fig. 13.
Fig. 13.

Experimental Z and Y positions of the light beam when liquids with different refractive indices fill the hollow prisms. Liquids shown in the plot were used to fill the first prism. This changed the beam’s vertical position (Z). The horizontal (Y) scanning position was achieved by changing the liquid in the second prism. The upper and right scales are in degrees.

Tables (3)

Tables Icon

Table 1. Refractive Indices of Some Liquids

Tables Icon

Table 2. Spectral Line Wavelengths, in Nanometers, of Mercury and Sodium Lamps

Tables Icon

Table 3. Output Angle α When Different Liquids Were Inserted in the Prism

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α=Sin1{nsiliconesin[θsin1((nliq/nsilicone)sinθ)]},

Metrics