Abstract

The composition of the low-toxicity, environmentally compatible diacetone acrylamide (DA) photopolymer has been modified with the inclusion of different additives. The addition of glycerol to the photopolymer composition is described. Results show that the incorporation of glycerol results in a uniform maximum refractive-index modulation for recording intensities in the range of 120mW/cm2. This may be attributed to glycerol’s nature as a plasticizer, which allows for faster diffusion of an unreacted monomer within the grating during holographic recording. An optimum recording intensity of 0.5mW/cm2 is observed for exposure energies of 2060mW/cm2. The modified photopolymer achieves a refractive-index modulation of 2.2×103, with diffraction efficiencies up to 90% in 100 μm layers. Glycerol has also shown to reduce the rate of photobleaching of the DA photopolymer. This is possibly due to more prevalent inhibition effects caused by increased oxygenation of the photopolymer layers. The stability of the photopolymer samples is also improved with the addition of glycerol.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer,” J. Opt. 14, 015601 (2012).
    [CrossRef]
  2. S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
    [CrossRef]
  3. D. D. McCollister, F. Oyen, and V. K. Rowe, “Toxicology of acrylamide,” Toxicol. Appl. Pharmacol. 6, 172–181 (1964).
    [CrossRef]
  4. A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
    [CrossRef]
  5. D. J. King and R. R. Noss, “Toxicity of polyacrylamide and acrylamide monomer,” Rev. Environ. Health 8, 3–16 (1989).
  6. “Health implications of acrylamide in food: report of a joint FAO/WHO consultation,” WHO Headquarters, Geneva, Switzerland, 25–27 June, 2002.
  7. J. Siemiatycki, L. Richardson, K. Straif, B. Latreille, R. Lakhani, S. Campbell, M. Rousseau, and P. Boffetta, “Listing occupational carcinogens,” Environ. Health Perspect. 112, 1447–1459 (2004).
    [CrossRef]
  8. Acrylamide; Sigma-Aldrich; http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do .
  9. Diacetone Acrylamide; Sigma-Aldrich; http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do .
  10. M. Ortuno, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15, 12425–12435 (2007).
    [CrossRef]
  11. S. Gallego, A. Marquez, M. Ortuno, S. Marini, and J. Frances, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33, 531–537 (2011).
    [CrossRef]
  12. A. Olivares-Perez, M. P. Hernandez-Garnay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl2(H2O),” Opt. Eng. 50, 0658011 (2011).
    [CrossRef]
  13. D. M. Sanderson, “A note on glycerol formal as a solvent in toxicity testing,” J. Pharm. Pharmacol. 11, 150–156 (1959).
    [CrossRef]
  14. R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
    [CrossRef]
  15. A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable material,” http://www.e-lc.org/docs/2004_05_05_11_13_17 .
  16. K. Pavani, Holographic Liquid Crystal Devices (Dublin Institute of Technology, 2009).
  17. X. Ren, Z. Yang, and T. Kuang, “Solvent-induced changes in photochemical activity and conformation of photosystem 1 particles by glycerol,” Biol. Chem. Hoppe-Seyler 387, 23–29 (2006).
  18. C. W. Bennett, “Glycerol as sensitizer,” J. Phys. Chem. 16, 614–615 (1912).
    [CrossRef]
  19. T. Meyer, G. Tollin, J. Hazzard, and M. Cusanovich, “Photoactive yellow protein from the purple phototropic bacterium,” Biophys. J. 56, 559–564 (1989).
    [CrossRef]
  20. L. Galassi, “Wavelength dependence of the time course of fluorescence enhancement and photobleaching during irradiation of ethidium bromide-stained nuclei,” Eur. J. Basic Appl. Histochem. 44, 419–432 (2000).
  21. H. Kogelnik, “Couple wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  22. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
    [CrossRef]

2012

D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer,” J. Opt. 14, 015601 (2012).
[CrossRef]

2011

S. Gallego, A. Marquez, M. Ortuno, S. Marini, and J. Frances, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33, 531–537 (2011).
[CrossRef]

A. Olivares-Perez, M. P. Hernandez-Garnay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl2(H2O),” Opt. Eng. 50, 0658011 (2011).
[CrossRef]

2007

2006

A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
[CrossRef]

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

X. Ren, Z. Yang, and T. Kuang, “Solvent-induced changes in photochemical activity and conformation of photosystem 1 particles by glycerol,” Biol. Chem. Hoppe-Seyler 387, 23–29 (2006).

2004

J. Siemiatycki, L. Richardson, K. Straif, B. Latreille, R. Lakhani, S. Campbell, M. Rousseau, and P. Boffetta, “Listing occupational carcinogens,” Environ. Health Perspect. 112, 1447–1459 (2004).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

2000

L. Galassi, “Wavelength dependence of the time course of fluorescence enhancement and photobleaching during irradiation of ethidium bromide-stained nuclei,” Eur. J. Basic Appl. Histochem. 44, 419–432 (2000).

1994

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

1989

D. J. King and R. R. Noss, “Toxicity of polyacrylamide and acrylamide monomer,” Rev. Environ. Health 8, 3–16 (1989).

T. Meyer, G. Tollin, J. Hazzard, and M. Cusanovich, “Photoactive yellow protein from the purple phototropic bacterium,” Biophys. J. 56, 559–564 (1989).
[CrossRef]

1969

H. Kogelnik, “Couple wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

1964

D. D. McCollister, F. Oyen, and V. K. Rowe, “Toxicology of acrylamide,” Toxicol. Appl. Pharmacol. 6, 172–181 (1964).
[CrossRef]

1959

D. M. Sanderson, “A note on glycerol formal as a solvent in toxicity testing,” J. Pharm. Pharmacol. 11, 150–156 (1959).
[CrossRef]

1912

C. W. Bennett, “Glycerol as sensitizer,” J. Phys. Chem. 16, 614–615 (1912).
[CrossRef]

Allen, B.

A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
[CrossRef]

Bartow, H.

A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
[CrossRef]

Belendez, A.

Bennett, C. W.

C. W. Bennett, “Glycerol as sensitizer,” J. Phys. Chem. 16, 614–615 (1912).
[CrossRef]

Boffetta, P.

J. Siemiatycki, L. Richardson, K. Straif, B. Latreille, R. Lakhani, S. Campbell, M. Rousseau, and P. Boffetta, “Listing occupational carcinogens,” Environ. Health Perspect. 112, 1447–1459 (2004).
[CrossRef]

Bounds, J.

A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
[CrossRef]

Campbell, S.

J. Siemiatycki, L. Richardson, K. Straif, B. Latreille, R. Lakhani, S. Campbell, M. Rousseau, and P. Boffetta, “Listing occupational carcinogens,” Environ. Health Perspect. 112, 1447–1459 (2004).
[CrossRef]

Clewell, H.

A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
[CrossRef]

Cody, D.

D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer,” J. Opt. 14, 015601 (2012).
[CrossRef]

Cusanovich, M.

T. Meyer, G. Tollin, J. Hazzard, and M. Cusanovich, “Photoactive yellow protein from the purple phototropic bacterium,” Biophys. J. 56, 559–564 (1989).
[CrossRef]

Eichler, H. J.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Fernandez, E.

Frances, J.

S. Gallego, A. Marquez, M. Ortuno, S. Marini, and J. Frances, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33, 531–537 (2011).
[CrossRef]

Frohmann, S.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Fuentes-Tapia, I.

A. Olivares-Perez, M. P. Hernandez-Garnay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl2(H2O),” Opt. Eng. 50, 0658011 (2011).
[CrossRef]

Galassi, L.

L. Galassi, “Wavelength dependence of the time course of fluorescence enhancement and photobleaching during irradiation of ethidium bromide-stained nuclei,” Eur. J. Basic Appl. Histochem. 44, 419–432 (2000).

Gallego, S.

S. Gallego, A. Marquez, M. Ortuno, S. Marini, and J. Frances, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33, 531–537 (2011).
[CrossRef]

M. Ortuno, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15, 12425–12435 (2007).
[CrossRef]

Gentry, R.

A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
[CrossRef]

Hazzard, J.

T. Meyer, G. Tollin, J. Hazzard, and M. Cusanovich, “Photoactive yellow protein from the purple phototropic bacterium,” Biophys. J. 56, 559–564 (1989).
[CrossRef]

Hernandez-Garnay, M. P.

A. Olivares-Perez, M. P. Hernandez-Garnay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl2(H2O),” Opt. Eng. 50, 0658011 (2011).
[CrossRef]

Howard, R.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

Ibarra-Torres, J. C.

A. Olivares-Perez, M. P. Hernandez-Garnay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl2(H2O),” Opt. Eng. 50, 0658011 (2011).
[CrossRef]

Jallapuram, R.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

King, D. J.

D. J. King and R. R. Noss, “Toxicity of polyacrylamide and acrylamide monomer,” Rev. Environ. Health 8, 3–16 (1989).

Kogelnik, H.

H. Kogelnik, “Couple wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kuang, T.

X. Ren, Z. Yang, and T. Kuang, “Solvent-induced changes in photochemical activity and conformation of photosystem 1 particles by glycerol,” Biol. Chem. Hoppe-Seyler 387, 23–29 (2006).

Lakhani, R.

J. Siemiatycki, L. Richardson, K. Straif, B. Latreille, R. Lakhani, S. Campbell, M. Rousseau, and P. Boffetta, “Listing occupational carcinogens,” Environ. Health Perspect. 112, 1447–1459 (2004).
[CrossRef]

Latreille, B.

J. Siemiatycki, L. Richardson, K. Straif, B. Latreille, R. Lakhani, S. Campbell, M. Rousseau, and P. Boffetta, “Listing occupational carcinogens,” Environ. Health Perspect. 112, 1447–1459 (2004).
[CrossRef]

Lawrence, A. G.

A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
[CrossRef]

Leclere, P.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Lion, Y.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Macdonald, N.

A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
[CrossRef]

Marini, S.

S. Gallego, A. Marquez, M. Ortuno, S. Marini, and J. Frances, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33, 531–537 (2011).
[CrossRef]

Marquez, A.

S. Gallego, A. Marquez, M. Ortuno, S. Marini, and J. Frances, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33, 531–537 (2011).
[CrossRef]

Martin, S.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

McCollister, D. D.

D. D. McCollister, F. Oyen, and V. K. Rowe, “Toxicology of acrylamide,” Toxicol. Appl. Pharmacol. 6, 172–181 (1964).
[CrossRef]

McDonald, T.

A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
[CrossRef]

Meyer, T.

T. Meyer, G. Tollin, J. Hazzard, and M. Cusanovich, “Photoactive yellow protein from the purple phototropic bacterium,” Biophys. J. 56, 559–564 (1989).
[CrossRef]

Mihaylova, E.

D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer,” J. Opt. 14, 015601 (2012).
[CrossRef]

Naydenova, I.

D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer,” J. Opt. 14, 015601 (2012).
[CrossRef]

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

Noss, R. R.

D. J. King and R. R. Noss, “Toxicity of polyacrylamide and acrylamide monomer,” Rev. Environ. Health 8, 3–16 (1989).

Olivares-Perez, A.

A. Olivares-Perez, M. P. Hernandez-Garnay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl2(H2O),” Opt. Eng. 50, 0658011 (2011).
[CrossRef]

Orlic, S.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Ortuno, M.

S. Gallego, A. Marquez, M. Ortuno, S. Marini, and J. Frances, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33, 531–537 (2011).
[CrossRef]

M. Ortuno, E. Fernandez, S. Gallego, A. Belendez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15, 12425–12435 (2007).
[CrossRef]

Oyen, F.

D. D. McCollister, F. Oyen, and V. K. Rowe, “Toxicology of acrylamide,” Toxicol. Appl. Pharmacol. 6, 172–181 (1964).
[CrossRef]

Pascual, I.

Pavani, K.

K. Pavani, Holographic Liquid Crystal Devices (Dublin Institute of Technology, 2009).

Ren, X.

X. Ren, Z. Yang, and T. Kuang, “Solvent-induced changes in photochemical activity and conformation of photosystem 1 particles by glycerol,” Biol. Chem. Hoppe-Seyler 387, 23–29 (2006).

Renotte, Y.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Richardson, L.

J. Siemiatycki, L. Richardson, K. Straif, B. Latreille, R. Lakhani, S. Campbell, M. Rousseau, and P. Boffetta, “Listing occupational carcinogens,” Environ. Health Perspect. 112, 1447–1459 (2004).
[CrossRef]

Rousseau, M.

J. Siemiatycki, L. Richardson, K. Straif, B. Latreille, R. Lakhani, S. Campbell, M. Rousseau, and P. Boffetta, “Listing occupational carcinogens,” Environ. Health Perspect. 112, 1447–1459 (2004).
[CrossRef]

Rowe, V. K.

D. D. McCollister, F. Oyen, and V. K. Rowe, “Toxicology of acrylamide,” Toxicol. Appl. Pharmacol. 6, 172–181 (1964).
[CrossRef]

Sanderson, D. M.

D. M. Sanderson, “A note on glycerol formal as a solvent in toxicity testing,” J. Pharm. Pharmacol. 11, 150–156 (1959).
[CrossRef]

Siemiatycki, J.

J. Siemiatycki, L. Richardson, K. Straif, B. Latreille, R. Lakhani, S. Campbell, M. Rousseau, and P. Boffetta, “Listing occupational carcinogens,” Environ. Health Perspect. 112, 1447–1459 (2004).
[CrossRef]

Straif, K.

J. Siemiatycki, L. Richardson, K. Straif, B. Latreille, R. Lakhani, S. Campbell, M. Rousseau, and P. Boffetta, “Listing occupational carcinogens,” Environ. Health Perspect. 112, 1447–1459 (2004).
[CrossRef]

Toal, V.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Tollin, G.

T. Meyer, G. Tollin, J. Hazzard, and M. Cusanovich, “Photoactive yellow protein from the purple phototropic bacterium,” Biophys. J. 56, 559–564 (1989).
[CrossRef]

Van Landingham, C.

A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
[CrossRef]

Yang, Z.

X. Ren, Z. Yang, and T. Kuang, “Solvent-induced changes in photochemical activity and conformation of photosystem 1 particles by glycerol,” Biol. Chem. Hoppe-Seyler 387, 23–29 (2006).

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Couple wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Biol. Chem. Hoppe-Seyler

X. Ren, Z. Yang, and T. Kuang, “Solvent-induced changes in photochemical activity and conformation of photosystem 1 particles by glycerol,” Biol. Chem. Hoppe-Seyler 387, 23–29 (2006).

Biophys. J.

T. Meyer, G. Tollin, J. Hazzard, and M. Cusanovich, “Photoactive yellow protein from the purple phototropic bacterium,” Biophys. J. 56, 559–564 (1989).
[CrossRef]

Crit. Rev. Toxicol.

A. G. Lawrence, R. Gentry, T. McDonald, H. Bartow, J. Bounds, N. Macdonald, H. Clewell, B. Allen, and C. Van Landingham, “Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects,” Crit. Rev. Toxicol. 36, 481–608 (2006).
[CrossRef]

Environ. Health Perspect.

J. Siemiatycki, L. Richardson, K. Straif, B. Latreille, R. Lakhani, S. Campbell, M. Rousseau, and P. Boffetta, “Listing occupational carcinogens,” Environ. Health Perspect. 112, 1447–1459 (2004).
[CrossRef]

Eur. J. Basic Appl. Histochem.

L. Galassi, “Wavelength dependence of the time course of fluorescence enhancement and photobleaching during irradiation of ethidium bromide-stained nuclei,” Eur. J. Basic Appl. Histochem. 44, 419–432 (2000).

J. Opt.

D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer,” J. Opt. 14, 015601 (2012).
[CrossRef]

J. Pharm. Pharmacol.

D. M. Sanderson, “A note on glycerol formal as a solvent in toxicity testing,” J. Pharm. Pharmacol. 11, 150–156 (1959).
[CrossRef]

J. Phys. Chem.

C. W. Bennett, “Glycerol as sensitizer,” J. Phys. Chem. 16, 614–615 (1912).
[CrossRef]

Opt. Eng.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

A. Olivares-Perez, M. P. Hernandez-Garnay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl2(H2O),” Opt. Eng. 50, 0658011 (2011).
[CrossRef]

Opt. Express

Opt. Mater.

S. Gallego, A. Marquez, M. Ortuno, S. Marini, and J. Frances, “High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit,” Opt. Mater. 33, 531–537 (2011).
[CrossRef]

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329–1333 (2006).
[CrossRef]

Rev. Environ. Health

D. J. King and R. R. Noss, “Toxicity of polyacrylamide and acrylamide monomer,” Rev. Environ. Health 8, 3–16 (1989).

Toxicol. Appl. Pharmacol.

D. D. McCollister, F. Oyen, and V. K. Rowe, “Toxicology of acrylamide,” Toxicol. Appl. Pharmacol. 6, 172–181 (1964).
[CrossRef]

Other

“Health implications of acrylamide in food: report of a joint FAO/WHO consultation,” WHO Headquarters, Geneva, Switzerland, 25–27 June, 2002.

Acrylamide; Sigma-Aldrich; http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do .

Diacetone Acrylamide; Sigma-Aldrich; http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do .

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable material,” http://www.e-lc.org/docs/2004_05_05_11_13_17 .

K. Pavani, Holographic Liquid Crystal Devices (Dublin Institute of Technology, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup: S, shutter; HWP, half-wave plate; BS, polarizing beam splitter; SF, spatial filter; C, collimator; VA, variable aperture; M, mirror.

Fig. 2.
Fig. 2.

Refractive-Index modulation versus recording intensity for the DA0 (no glycerol) and DAG (with glycerol) compositions at 1000l/mm for an exposure of 100mJ/cm2.

Fig. 3.
Fig. 3.

Refractive-Index modulation versus recording intensity for DAG over a range of exposure energies.

Fig. 4.
Fig. 4.

Refractive-Index modulation versus exposure energy for DAG samples tested at low (2mW/cm2) and high (10 and 20mW/cm2) intensities.

Fig. 5.
Fig. 5.

Refractive-Index modulation versus recording intensity for the DA0 (no glycerol) and DAG (with glycerol) compositions at 3000l/mm for exposure energy of 100mJ/cm2.

Fig. 6.
Fig. 6.

Inhibition period at beginning of recording versus recording intensity for DAG samples.

Fig. 7.
Fig. 7.

Graph showing the rate of bleaching versus layer thickness for the DA0 (no glycerol) and DAG (with glycerol) and AA compositions.

Tables (1)

Tables Icon

Table 1. Composition of DA and AA Solutions

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

XD+hvX1D.
X1DXD+hv,
X1D+YXD+Y*.
X1DX3D.
X3D+EDXD+ED.
ED+MEDM.
EDM+MED(M)2.
X3D+O23XD+O23,
X1D+O23XD+O21.
Δn=λcosθsin1(η)πd,

Metrics