Abstract

We investigate subwavelength titanium oxide (TiO2) resonance waveguide gratings (RWGs) and TiO2 thin films of thicknesses 200nm fabricated by atomic layer deposition (ALD), in both amorphous and crystalline phases on fused silica substrates. The TiO2 RWGs are fabricated by electron beam lithography, reactive ion etching, and ALD. The thin films and RWGs are characterized structurally by x-ray diffraction and scanning electron microscopy. The optical characterization of RWGs and optical constants of TiO2 films are studied by an ellipsometer. RWGs are designed for TE and TM modes in such a way that an overetch effect of the fused silica substrate can be investigated. Various RWG samples are prepared by gradually increasing the overetch depth and subsequently measuring the performance of the RWGs. A close agreement between the calculated and experimentally measured resonance wavelength spectral shifts is obtained; however, the magnitudes of the measured shifts are greater than calculated ones. A parallel study related to the measurement of the refractive indices and remeasuring the optical shifts of RWGs is carried out after a heat treatment of all the samples under study. The RWGs do not reveal significant spectral changes after the heat treatment; this is primarily due to a change in the surface chemistry by the redeposition of the reaction byproducts on the grating lines.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Alasaarela, D. Zheng, L. Huang, A. Priimagi, B. Bai, A. Tervonen, S. Honkanen, M. Kuittinen, and J. Turunen, “Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence,” Opt. Lett. 36, 2411–2413 (2011).
    [CrossRef]
  2. M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, “ALD-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol. 30, 2488–2493 (2012).
    [CrossRef]
  3. T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, and J.-H. Boo, “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification,” Thin Solid Films 475, 171–177 (2005).
    [CrossRef]
  4. M. R. Saleem, P. Stenberg, T. Alasaarela, P. Silfsten, M. B. Khan, S. Honkanen, and J. Turunen, “Towards athermal organic–inorganic guided mode resonance filters,” Opt. Express 19, 24241–24251 (2011).
    [CrossRef]
  5. M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
    [CrossRef]
  6. M. R. Saleem, P. Silfsten, S. Honkanen, and J. Turunen, “Thermal properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 520, 5442–5446 (2012).
    [CrossRef]
  7. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, and A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989).
    [CrossRef]
  8. K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube, and R. Feile, “Investigations of TiO2 films deposited by different techniques,” Thin Solid Films 197, 279–285 (1991).
    [CrossRef]
  9. R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” Appl. Phys. 97, 121301 (2005).
    [CrossRef]
  10. M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Microlithogr. Microfabr. Microsyst. 11, 013007 (2012).
    [CrossRef]
  11. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
    [CrossRef]
  12. T. Clausnitzer, A. V. Tishchenko, E.-B. Kley, H.-J. Fuchs, D. Schelle, O. Parriaux, and U. Kroll, “Narrowband polarization-independent free-space wave notch filter,” J. Opt. Soc. Am. A 22, 2799–2803 (2005).
    [CrossRef]
  13. M. R. Saleem, D. Zheng, B. Bai, P. Stenberg, M. Kuittinen, S. Honkanen, and J. Turunen, “Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence,” Opt. Express 20, 16974–16980 (2012).
    [CrossRef]
  14. J. Dekker, K. Kolari, and R. L. Puurunen, “Inductively coupled plasma etching of amorphous Al2O3 and TiO2 mask layers grown by atomic layer deposition,” J. Vac. Sci. Technol. B 24, 2350–2355 (2006).
    [CrossRef]
  15. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  16. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).
  17. Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218, 98–106 (2003).
    [CrossRef]
  18. E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. MacDonald, “Inductively coupled plasma etching of bulk titanium for MEMS applications,” J. Electrochem. Soc. 152, C675–C683 (2005).
    [CrossRef]
  19. S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
    [CrossRef]
  20. K. M. Kim, S. Y. Lee, G. J. Choi, J. H. Han, and C. S. Hwang, “Electrically benign dry-etching method for rutile TiO2 thin-film capacitors with Ru electrodes,” Electrochem. Solid State Lett. 13, G1–G4 (2010).
    [CrossRef]

2012 (4)

M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, and I. Tittonen, “ALD-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol. 30, 2488–2493 (2012).
[CrossRef]

M. R. Saleem, P. Silfsten, S. Honkanen, and J. Turunen, “Thermal properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 520, 5442–5446 (2012).
[CrossRef]

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Microlithogr. Microfabr. Microsyst. 11, 013007 (2012).
[CrossRef]

M. R. Saleem, D. Zheng, B. Bai, P. Stenberg, M. Kuittinen, S. Honkanen, and J. Turunen, “Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence,” Opt. Express 20, 16974–16980 (2012).
[CrossRef]

2011 (3)

2010 (1)

K. M. Kim, S. Y. Lee, G. J. Choi, J. H. Han, and C. S. Hwang, “Electrically benign dry-etching method for rutile TiO2 thin-film capacitors with Ru electrodes,” Electrochem. Solid State Lett. 13, G1–G4 (2010).
[CrossRef]

2006 (1)

J. Dekker, K. Kolari, and R. L. Puurunen, “Inductively coupled plasma etching of amorphous Al2O3 and TiO2 mask layers grown by atomic layer deposition,” J. Vac. Sci. Technol. B 24, 2350–2355 (2006).
[CrossRef]

2005 (4)

E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. MacDonald, “Inductively coupled plasma etching of bulk titanium for MEMS applications,” J. Electrochem. Soc. 152, C675–C683 (2005).
[CrossRef]

R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” Appl. Phys. 97, 121301 (2005).
[CrossRef]

T. Clausnitzer, A. V. Tishchenko, E.-B. Kley, H.-J. Fuchs, D. Schelle, O. Parriaux, and U. Kroll, “Narrowband polarization-independent free-space wave notch filter,” J. Opt. Soc. Am. A 22, 2799–2803 (2005).
[CrossRef]

T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, and J.-H. Boo, “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification,” Thin Solid Films 475, 171–177 (2005).
[CrossRef]

2003 (1)

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218, 98–106 (2003).
[CrossRef]

2001 (1)

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

1997 (1)

1993 (1)

1991 (1)

K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube, and R. Feile, “Investigations of TiO2 films deposited by different techniques,” Thin Solid Films 197, 279–285 (1991).
[CrossRef]

1989 (1)

Aimi, M. F.

E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. MacDonald, “Inductively coupled plasma etching of bulk titanium for MEMS applications,” J. Electrochem. Soc. 152, C675–C683 (2005).
[CrossRef]

Alasaarela, T.

Albrand, G.

Allen, T. H.

Anderson, O.

K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube, and R. Feile, “Investigations of TiO2 films deposited by different techniques,” Thin Solid Films 197, 279–285 (1991).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Bai, B.

Baik, K. H.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

Bange, K.

K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube, and R. Feile, “Investigations of TiO2 films deposited by different techniques,” Thin Solid Films 197, 279–285 (1991).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Bennett, J. M.

Boo, J.-H.

T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, and J.-H. Boo, “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification,” Thin Solid Films 475, 171–177 (2005).
[CrossRef]

Borgogno, J. P.

Carniglia, C. K.

Choi, G. J.

K. M. Kim, S. Y. Lee, G. J. Choi, J. H. Han, and C. S. Hwang, “Electrically benign dry-etching method for rutile TiO2 thin-film capacitors with Ru electrodes,” Electrochem. Solid State Lett. 13, G1–G4 (2010).
[CrossRef]

Clausnitzer, T.

Dekker, J.

J. Dekker, K. Kolari, and R. L. Puurunen, “Inductively coupled plasma etching of amorphous Al2O3 and TiO2 mask layers grown by atomic layer deposition,” J. Vac. Sci. Technol. B 24, 2350–2355 (2006).
[CrossRef]

Erdmanis, M.

Feile, R.

K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube, and R. Feile, “Investigations of TiO2 films deposited by different techniques,” Thin Solid Films 197, 279–285 (1991).
[CrossRef]

Fuchs, H.-J.

Fujiwara, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[CrossRef]

Furuhashi, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[CrossRef]

Guenther, K. H.

Han, J. H.

K. M. Kim, S. Y. Lee, G. J. Choi, J. H. Han, and C. S. Hwang, “Electrically benign dry-etching method for rutile TiO2 thin-film capacitors with Ru electrodes,” Electrochem. Solid State Lett. 13, G1–G4 (2010).
[CrossRef]

Honkanen, S.

Hou, Y.-Q.

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218, 98–106 (2003).
[CrossRef]

Huang, L.

Hwang, C. S.

K. M. Kim, S. Y. Lee, G. J. Choi, J. H. Han, and C. S. Hwang, “Electrically benign dry-etching method for rutile TiO2 thin-film capacitors with Ru electrodes,” Electrochem. Solid State Lett. 13, G1–G4 (2010).
[CrossRef]

Jeong, B. S.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

Jeschkowski, U.

K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube, and R. Feile, “Investigations of TiO2 films deposited by different techniques,” Thin Solid Films 197, 279–285 (1991).
[CrossRef]

Jung, C. K.

T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, and J.-H. Boo, “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification,” Thin Solid Films 475, 171–177 (2005).
[CrossRef]

Karvonen, L.

Kawai, T.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[CrossRef]

Khan, M. B.

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Microlithogr. Microfabr. Microsyst. 11, 013007 (2012).
[CrossRef]

M. R. Saleem, P. Stenberg, T. Alasaarela, P. Silfsten, M. B. Khan, S. Honkanen, and J. Turunen, “Towards athermal organic–inorganic guided mode resonance filters,” Opt. Express 19, 24241–24251 (2011).
[CrossRef]

Khan, Z. M.

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Microlithogr. Microfabr. Microsyst. 11, 013007 (2012).
[CrossRef]

Kim, K. M.

K. M. Kim, S. Y. Lee, G. J. Choi, J. H. Han, and C. S. Hwang, “Electrically benign dry-etching method for rutile TiO2 thin-film capacitors with Ru electrodes,” Electrochem. Solid State Lett. 13, G1–G4 (2010).
[CrossRef]

Kim, T. K.

T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, and J.-H. Boo, “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification,” Thin Solid Films 475, 171–177 (2005).
[CrossRef]

Kley, E.-B.

Kolari, K.

J. Dekker, K. Kolari, and R. L. Puurunen, “Inductively coupled plasma etching of amorphous Al2O3 and TiO2 mask layers grown by atomic layer deposition,” J. Vac. Sci. Technol. B 24, 2350–2355 (2006).
[CrossRef]

Kroll, U.

Kuittinen, M.

Lambers, E. S.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

Laube, M.

K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube, and R. Feile, “Investigations of TiO2 films deposited by different techniques,” Thin Solid Films 197, 279–285 (1991).
[CrossRef]

Lazarides, B.

Lee, K. P.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

Lee, M. N.

T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, and J.-H. Boo, “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification,” Thin Solid Films 475, 171–177 (2005).
[CrossRef]

Lee, S. H.

T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, and J.-H. Boo, “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification,” Thin Solid Films 475, 171–177 (2005).
[CrossRef]

Lee, S. Y.

K. M. Kim, S. Y. Lee, G. J. Choi, J. H. Han, and C. S. Hwang, “Electrically benign dry-etching method for rutile TiO2 thin-film capacitors with Ru electrodes,” Electrochem. Solid State Lett. 13, G1–G4 (2010).
[CrossRef]

Li, L.

MacDonald, N. C.

E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. MacDonald, “Inductively coupled plasma etching of bulk titanium for MEMS applications,” J. Electrochem. Soc. 152, C675–C683 (2005).
[CrossRef]

Magnusson, R.

Matsubara, K.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[CrossRef]

Norasetthekul, S.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

Norton, D. P.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

Ohshiro, T.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[CrossRef]

Ottermann, C. R.

K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube, and R. Feile, “Investigations of TiO2 films deposited by different techniques,” Thin Solid Films 197, 279–285 (1991).
[CrossRef]

Pale, V.

Park, P. Y.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

Park, Y. C.

T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, and J.-H. Boo, “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification,” Thin Solid Films 475, 171–177 (2005).
[CrossRef]

Parker, E. R.

E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. MacDonald, “Inductively coupled plasma etching of bulk titanium for MEMS applications,” J. Electrochem. Soc. 152, C675–C683 (2005).
[CrossRef]

Parriaux, O.

Pearton, S. J.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

Pelletier, E.

Priimagi, A.

Puurunen, R. L.

J. Dekker, K. Kolari, and R. L. Puurunen, “Inductively coupled plasma etching of amorphous Al2O3 and TiO2 mask layers grown by atomic layer deposition,” J. Vac. Sci. Technol. B 24, 2350–2355 (2006).
[CrossRef]

R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” Appl. Phys. 97, 121301 (2005).
[CrossRef]

Rao, M. P.

E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. MacDonald, “Inductively coupled plasma etching of bulk titanium for MEMS applications,” J. Electrochem. Soc. 152, C675–C683 (2005).
[CrossRef]

Ruoho, M.

Saleem, M. R.

Saxer, A.

Schelle, D.

Schmell, R. A.

Shin, J. H.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

Shishodia, V.

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

Silfsten, P.

M. R. Saleem, P. Silfsten, S. Honkanen, and J. Turunen, “Thermal properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 520, 5442–5446 (2012).
[CrossRef]

M. R. Saleem, P. Stenberg, T. Alasaarela, P. Silfsten, M. B. Khan, S. Honkanen, and J. Turunen, “Towards athermal organic–inorganic guided mode resonance filters,” Opt. Express 19, 24241–24251 (2011).
[CrossRef]

Stenberg, P.

Stenberg, P. A.

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Microlithogr. Microfabr. Microsyst. 11, 013007 (2012).
[CrossRef]

Takeuchi, S.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[CrossRef]

Taniguchi, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[CrossRef]

Tervonen, A.

Thibeault, B. J.

E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. MacDonald, “Inductively coupled plasma etching of bulk titanium for MEMS applications,” J. Electrochem. Soc. 152, C675–C683 (2005).
[CrossRef]

Tishchenko, A. V.

Tittonen, I.

Tsutsui, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[CrossRef]

Turunen, J.

Tuttle-Hart, T.

Wang, S. S.

Wu, M.-S.

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218, 98–106 (2003).
[CrossRef]

Zhang, G.

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218, 98–106 (2003).
[CrossRef]

Zhao, M.

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218, 98–106 (2003).
[CrossRef]

Zheng, D.

Zhuang, D.-M.

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218, 98–106 (2003).
[CrossRef]

AIP Adv. (1)

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1, 032102 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (1)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” Appl. Phys. 97, 121301 (2005).
[CrossRef]

Appl. Surf. Sci. (2)

Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, “Influence of annealing temperature on the properties of titanium oxide thin film,” Appl. Surf. Sci. 218, 98–106 (2003).
[CrossRef]

S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton, and S. J. Pearton, “Dry etch chemistries for TiO2 thin films,” Appl. Surf. Sci. 185, 27–33 (2001).
[CrossRef]

Electrochem. Solid State Lett. (1)

K. M. Kim, S. Y. Lee, G. J. Choi, J. H. Han, and C. S. Hwang, “Electrically benign dry-etching method for rutile TiO2 thin-film capacitors with Ru electrodes,” Electrochem. Solid State Lett. 13, G1–G4 (2010).
[CrossRef]

J. Electrochem. Soc. (1)

E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. MacDonald, “Inductively coupled plasma etching of bulk titanium for MEMS applications,” J. Electrochem. Soc. 152, C675–C683 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Microlithogr. Microfabr. Microsyst. (1)

M. R. Saleem, P. A. Stenberg, M. B. Khan, Z. M. Khan, S. Honkanen, and J. Turunen, “Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers,” J. Microlithogr. Microfabr. Microsyst. 11, 013007 (2012).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (1)

J. Dekker, K. Kolari, and R. L. Puurunen, “Inductively coupled plasma etching of amorphous Al2O3 and TiO2 mask layers grown by atomic layer deposition,” J. Vac. Sci. Technol. B 24, 2350–2355 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Thin Solid Films (3)

T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, and J.-H. Boo, “Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification,” Thin Solid Films 475, 171–177 (2005).
[CrossRef]

K. Bange, C. R. Ottermann, O. Anderson, U. Jeschkowski, M. Laube, and R. Feile, “Investigations of TiO2 films deposited by different techniques,” Thin Solid Films 197, 279–285 (1991).
[CrossRef]

M. R. Saleem, P. Silfsten, S. Honkanen, and J. Turunen, “Thermal properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 520, 5442–5446 (2012).
[CrossRef]

Other (1)

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic representation of a TiO2 RWG. (a) Etched to the surface of substrate SiO2 and (b) overetched in substrate SiO2.

Fig. 2.
Fig. 2.

Calculated results of specular reflectance/transmittance at normal incidence of nonpolarizing RWGs with a period d=540nm, a linewidth w=401.5nm, and a structure height hc=199nm. The refractive indices of air, TiO2, and fused silica are na=1, nc=2.32, and ns=1.45, respectively. (a) Cross point of the dispersion curves of the TE and TM modes and (b) the reflectance and transmittance spectra at a resonance wavelength λr of 850 nm. Optimized grating parameters for specular reflectance in terms of linewidth w and structure height hc for (c) TE mode and (d) TM mode.

Fig. 3.
Fig. 3.

Simulation results of specular reflectance showing the variation in the resonance wavelength λr with the increase in overetch depth hs in the fused silica substrate. (a) TE mode with amorphous TiO2, (b) TM mode with amorphous TiO2, (c) both the TE and TM modes and their effect on the nonpolarizing property of amorphous TiO2 waveguide gratings, and (d) both the TE and TM modes and their effect on the nonpolarizing property of crystalline (anatase) TiO2 gratings.

Fig. 4.
Fig. 4.

Simulation results of specular reflectance in terms of ridge height hc and linewidth w of nonpolarizing RWGs with period d=540nm, linewidth w=401.5nm, and structure height hc=199nm, showing the propagation mode splitting with an overetch depth hs=50nm into fused silica substrate. (a) TE mode and (b) TM mode.

Fig. 5.
Fig. 5.

Measured and fitted ellipsometric data of amorphous and crystalline (anatase) TiO2 films of thicknesses 200nm. (a) ψ, (b) Δ of amorphous films, (c) ψ, and (d) Δ of crystalline films.

Fig. 6.
Fig. 6.

Simulated spectral shifts in the central resonance wavelength λr of specular reflectance at normal incidence with a change in refractive index of TiO2 material, before and after a phase change of TiO2. The RWG parameters were a period d=540nm, a linewidth w=401.5nm, and a structure height hc=199nm. (a) TE mode and (b) TM mode.

Fig. 7.
Fig. 7.

XRD patterns of the TiO2 thin films of thicknesses 200nm deposited on fused silica by ALD. (a) As-deposited amorphous phase and (b) heat-treated crystalline phase (anatase).

Fig. 8.
Fig. 8.

Refractive index of the TiO2 thin films of thicknesses 200nm deposited on fused silica by ALD using precursors TiCl4 and H2O with nitrogen as a carrier gas at a deposition temperature of 120°C and a growth rate of 0.065 nm per cycle. (a) As-deposited amorphous phase and (b) heat-treated crystalline phase (anatase), at 300°C for 7 h.

Fig. 9.
Fig. 9.

SEM pictures of TiO2 films on fused silica substrate. (a) As-deposited amorphous film and (b) heat-treated crystalline film.

Fig. 10.
Fig. 10.

Measured transmittance at a wavelength range 380–1800 nm of TiO2 films deposited on a fused silica substrate by ALD. (a) As-deposited amorphous film and (b) heat-treated crystalline film.

Fig. 11.
Fig. 11.

SEM pictures of TiO2 RWGs etched to different depths. (a), (b) Etched to the surface of the substrate (fused silica), (c) overetched 39 nm in the substrate, (d) overetched 73 nm in the substrate, (e) overetched 97 nm in the substrate, and (f) overetched 128 nm in the substrate.

Fig. 12.
Fig. 12.

Measured transmittance, at normal incidence, of the fabricated TiO2 RWGs with a slightly slanted profile with a period d=544nm, a linewidth w=407nm, and a structure height hc=201nm. (a) Amorphous phase and (b) heat treated.

Fig. 13.
Fig. 13.

Measured resonance wavelength λr at normal incidence, with the overetching depth hs in the fused silica substrate of fabricated RWGs with a period d=544nm, a linewidth w=407nm, and a structure height hc=201nm. (a) Both the TE and TM modes and their effect on the nonpolarizing property of amorphous TiO2 gratings and (b) both the TE and TM modes and their effect on the nonpolarizing property of heat-treated TiO2 gratings.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tanΨeiΔ=RpRs,

Metrics