Abstract

A pump-signal combiner with a new processing method is reported in this paper. The core deformation of the signal fiber can be avoided by this method, and an 8+1 to 1 pump-signal combiner with 100 μm core-signal fiber feed-through is fabricated. The pump and signal coupling efficiencies are 96.8% and 98.0%, respectively. Furthermore, this pump-signal combiner is applied to a CW large mode area fiber laser with a counter pump configuration. The output power of the laser is 87 W.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
    [CrossRef]
  2. S. Desmoulins and F. Di Teodoro, “High-gain Er-doped fiber amplifier generating eye-safe MW peak-power, mJ energy pulses,” Opt. Express 16, 2431–2437 (2008).
    [CrossRef]
  3. V. Filippov, J. Kerttula, Y. Chamorovskii, K. Golant, and O. G. Okhotnikov, “Highly efficient 750 W tapered double-clad ytterbium fiber laser,” Opt. Express 18, 12499–12512(2010).
    [CrossRef]
  4. H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
    [CrossRef]
  5. V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90, 369–372 (2008).
    [CrossRef]
  6. http://www.3spgroup.com .
  7. B. Wang and E. Mies, “Review of fabrication techniques for fused fiber components for fiber lasers,” Proc. SPIE 7195, 71950A (2009).
    [CrossRef]
  8. A. Braglia, M. Olivero, A. Neri, and G. Perrone, “Fabrication of pump combiners for high-power fiber lasers,” Proc. SPIE 7914, 79142V (2011).
    [CrossRef]
  9. B. Sevigny, P. Poirier, and M. Faucher, “Pump combiner loss as a function of input numerical aperture power distribution,” Proc. SPIE 7195, 719523 (2009).
    [CrossRef]
  10. W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Sel. Top. Quantum Electron. 29, 2639–2649 (1993).
    [CrossRef]
  11. S. Yin, P. Yan, M. Gong, J. He, and C. Fu, “Fusion splicing of double-clad specialty fiber using active alignment technology,” Chin. Opt. Lett. 9, 020601 (2011).

2011 (3)

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

A. Braglia, M. Olivero, A. Neri, and G. Perrone, “Fabrication of pump combiners for high-power fiber lasers,” Proc. SPIE 7914, 79142V (2011).
[CrossRef]

S. Yin, P. Yan, M. Gong, J. He, and C. Fu, “Fusion splicing of double-clad specialty fiber using active alignment technology,” Chin. Opt. Lett. 9, 020601 (2011).

2010 (1)

2009 (2)

B. Wang and E. Mies, “Review of fabrication techniques for fused fiber components for fiber lasers,” Proc. SPIE 7195, 71950A (2009).
[CrossRef]

B. Sevigny, P. Poirier, and M. Faucher, “Pump combiner loss as a function of input numerical aperture power distribution,” Proc. SPIE 7195, 719523 (2009).
[CrossRef]

2008 (2)

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90, 369–372 (2008).
[CrossRef]

S. Desmoulins and F. Di Teodoro, “High-gain Er-doped fiber amplifier generating eye-safe MW peak-power, mJ energy pulses,” Opt. Express 16, 2431–2437 (2008).
[CrossRef]

2007 (1)

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

1993 (1)

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Sel. Top. Quantum Electron. 29, 2639–2649 (1993).
[CrossRef]

Ballato, J.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90, 369–372 (2008).
[CrossRef]

Bass, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90, 369–372 (2008).
[CrossRef]

Braglia, A.

A. Braglia, M. Olivero, A. Neri, and G. Perrone, “Fabrication of pump combiners for high-power fiber lasers,” Proc. SPIE 7914, 79142V (2011).
[CrossRef]

Chamorovskii, Y.

Chen, Y.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90, 369–372 (2008).
[CrossRef]

Cheng, M. Y.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

Desmoulins, S.

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

S. Desmoulins and F. Di Teodoro, “High-gain Er-doped fiber amplifier generating eye-safe MW peak-power, mJ energy pulses,” Opt. Express 16, 2431–2437 (2008).
[CrossRef]

Di Teodoro, F.

Doerfel, F.

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

Faucher, M.

B. Sevigny, P. Poirier, and M. Faucher, “Pump combiner loss as a function of input numerical aperture power distribution,” Proc. SPIE 7195, 719523 (2009).
[CrossRef]

Filippov, V.

Flohrer, F.

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

Fu, C.

Galvanauskas, A.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

Ghiringhelli, F.

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

Golant, K.

Gong, M.

He, J.

Horley, R.

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

Hou, K. C.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

Huang, W. P.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Sel. Top. Quantum Electron. 29, 2639–2649 (1993).
[CrossRef]

Kerttula, J.

Kozak, M.

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

Liao, K. H.

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

Liem, A.

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

Linke, S.

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

McComb, T.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90, 369–372 (2008).
[CrossRef]

Mies, E.

B. Wang and E. Mies, “Review of fabrication techniques for fused fiber components for fiber lasers,” Proc. SPIE 7195, 71950A (2009).
[CrossRef]

Neri, A.

A. Braglia, M. Olivero, A. Neri, and G. Perrone, “Fabrication of pump combiners for high-power fiber lasers,” Proc. SPIE 7914, 79142V (2011).
[CrossRef]

Okhotnikov, O. G.

Olivero, M.

A. Braglia, M. Olivero, A. Neri, and G. Perrone, “Fabrication of pump combiners for high-power fiber lasers,” Proc. SPIE 7914, 79142V (2011).
[CrossRef]

Perrone, G.

A. Braglia, M. Olivero, A. Neri, and G. Perrone, “Fabrication of pump combiners for high-power fiber lasers,” Proc. SPIE 7914, 79142V (2011).
[CrossRef]

Poirier, P.

B. Sevigny, P. Poirier, and M. Faucher, “Pump combiner loss as a function of input numerical aperture power distribution,” Proc. SPIE 7195, 719523 (2009).
[CrossRef]

Richardson, M.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90, 369–372 (2008).
[CrossRef]

Riedel, P.

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

Sevigny, B.

B. Sevigny, P. Poirier, and M. Faucher, “Pump combiner loss as a function of input numerical aperture power distribution,” Proc. SPIE 7195, 719523 (2009).
[CrossRef]

Siegman, A. E.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90, 369–372 (2008).
[CrossRef]

Sudesh, V.

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90, 369–372 (2008).
[CrossRef]

Wang, B.

B. Wang and E. Mies, “Review of fabrication techniques for fused fiber components for fiber lasers,” Proc. SPIE 7195, 71950A (2009).
[CrossRef]

Xu, C. L.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Sel. Top. Quantum Electron. 29, 2639–2649 (1993).
[CrossRef]

Yan, P.

Yin, S.

Zimer, H.

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

Appl. Phys. B (1)

V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90, 369–372 (2008).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Sel. Top. Quantum Electron. 29, 2639–2649 (1993).
[CrossRef]

A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

Opt. Express (2)

Proc. SPIE (4)

B. Wang and E. Mies, “Review of fabrication techniques for fused fiber components for fiber lasers,” Proc. SPIE 7195, 71950A (2009).
[CrossRef]

A. Braglia, M. Olivero, A. Neri, and G. Perrone, “Fabrication of pump combiners for high-power fiber lasers,” Proc. SPIE 7914, 79142V (2011).
[CrossRef]

B. Sevigny, P. Poirier, and M. Faucher, “Pump combiner loss as a function of input numerical aperture power distribution,” Proc. SPIE 7195, 719523 (2009).
[CrossRef]

H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, and S. Desmoulins, “Fibers and fiber-optic components for high-power fiber lasers,” Proc. SPIE 7914, 791414 (2011).
[CrossRef]

Other (1)

http://www.3spgroup.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of deformation fiber.

Fig. 2.
Fig. 2.

Ratio of output power and input power versus the diameters of the narrow ends of taper region for seven different eigenmodes.

Fig. 3.
Fig. 3.

Intensity profiles of input modes (the first row) and output beams (the second row) for three incident eigenmodes: LP01 (left), LP04 (middle), and LP53 (right).

Fig. 4.
Fig. 4.

Ratio of output and input power versus the bend height of radial deformation fiber for seven different eigenmodes.

Fig. 5.
Fig. 5.

Intensity profile of output beam of three eigenmodes (the first rank: LP01; the second rank: LP04; and the third rank: LP53) for bend height H=5μm (the first row) and H=25μm (the second row).

Fig. 6.
Fig. 6.

Fabrication process of the pump-signal combiner.

Fig. 7.
Fig. 7.

Fiber bundle and the output fiber are spliced using active alignment technology.

Fig. 8.
Fig. 8.

Microscope pictures of this combiner. (a) End and (b) side views.

Fig. 9.
Fig. 9.

Pump-coupling efficiency of this end-pumping combiner.

Fig. 10.
Fig. 10.

Experimental setup of fiber laser.

Fig. 11.
Fig. 11.

(a) Output power of the fiber laser pumped using the pump-signal combiner. (b) Beam quality of fiber laser.

Metrics