Abstract

A focus-swing liquid-crystal (LC) microlens with two patterned electrodes and filled in nematic liquid crystal is proposed. In order to lower the level of the applied voltage signal and effectively increase the focus-swing range, the bottom electrode is designed as a circular patterned structure. The top electrode is composed of four stripe-patterned subelectrodes, which are powered, respectively to generate expecting potential and drive the focus swing in the focal plane of the microlens. The common optical properties of the LC microlens and the swing behavior of the formed focus in the focal plane are demonstrated experimentally.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
    [CrossRef]
  2. T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
    [CrossRef]
  3. T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
    [CrossRef]
  4. S. Masuda, S. Takahashi, and T. Nose, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
    [CrossRef]
  5. M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
    [CrossRef]
  6. M. Ye, B. Wang, and S. Sata, “Double-layer liquid crystal lens,” Jpn. J. Phys. 43, L352–L354 (2004).
    [CrossRef]
  7. H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tenability,” Opt. Express 14, 11292–11297 (2006).
    [CrossRef]
  8. T. Yi, T. Paul, C.-P. Chao, and C.-T. Lin, “A new liquid crystal lens with axis-tunability via three sector electrodes,” Microsyst. Technol. 18, 1297–1307 (2012).
    [CrossRef]
  9. Y.-Y. Kao and P. C.-P. Chao, “A new dual-frequency liquid crystal lens with ring-and-Pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors 11, 5402–5415 (2011).
    [CrossRef]
  10. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
    [CrossRef]
  11. M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225, 277–280 (2003).
    [CrossRef]
  12. M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722 (2006).
    [CrossRef]
  13. P. G. de Gennes, The Physics of Liquid Crystals (Oxford University, 1974).

2012 (1)

T. Yi, T. Paul, C.-P. Chao, and C.-T. Lin, “A new liquid crystal lens with axis-tunability via three sector electrodes,” Microsyst. Technol. 18, 1297–1307 (2012).
[CrossRef]

2011 (1)

Y.-Y. Kao and P. C.-P. Chao, “A new dual-frequency liquid crystal lens with ring-and-Pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors 11, 5402–5415 (2011).
[CrossRef]

2006 (2)

H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tenability,” Opt. Express 14, 11292–11297 (2006).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722 (2006).
[CrossRef]

2004 (2)

2003 (2)

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225, 277–280 (2003).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

1997 (1)

1991 (1)

T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

1989 (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Chao, C.-P.

T. Yi, T. Paul, C.-P. Chao, and C.-T. Lin, “A new liquid crystal lens with axis-tunability via three sector electrodes,” Microsyst. Technol. 18, 1297–1307 (2012).
[CrossRef]

Chao, P. C.-P.

Y.-Y. Kao and P. C.-P. Chao, “A new dual-frequency liquid crystal lens with ring-and-Pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors 11, 5402–5415 (2011).
[CrossRef]

de Gennes, P. G.

P. G. de Gennes, The Physics of Liquid Crystals (Oxford University, 1974).

Kao, Y.-Y.

Y.-Y. Kao and P. C.-P. Chao, “A new dual-frequency liquid crystal lens with ring-and-Pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors 11, 5402–5415 (2011).
[CrossRef]

Lin, C.-T.

T. Yi, T. Paul, C.-P. Chao, and C.-T. Lin, “A new liquid crystal lens with axis-tunability via three sector electrodes,” Microsyst. Technol. 18, 1297–1307 (2012).
[CrossRef]

Masuda, S.

S. Masuda, S. Takahashi, and T. Nose, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

Nose, T.

S. Masuda, S. Takahashi, and T. Nose, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Paul, T.

T. Yi, T. Paul, C.-P. Chao, and C.-T. Lin, “A new liquid crystal lens with axis-tunability via three sector electrodes,” Microsyst. Technol. 18, 1297–1307 (2012).
[CrossRef]

Ren, H.

Sata, S.

M. Ye, B. Wang, and S. Sata, “Double-layer liquid crystal lens,” Jpn. J. Phys. 43, L352–L354 (2004).
[CrossRef]

Sato, S.

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722 (2006).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
[CrossRef]

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225, 277–280 (2003).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Takahashi, S.

Wang, B.

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722 (2006).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
[CrossRef]

M. Ye, B. Wang, and S. Sata, “Double-layer liquid crystal lens,” Jpn. J. Phys. 43, L352–L354 (2004).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

Wu, S.-T.

Ye, M.

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722 (2006).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407–6412 (2004).
[CrossRef]

M. Ye, B. Wang, and S. Sata, “Double-layer liquid crystal lens,” Jpn. J. Phys. 43, L352–L354 (2004).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225, 277–280 (2003).
[CrossRef]

Yi, T.

T. Yi, T. Paul, C.-P. Chao, and C.-T. Lin, “A new liquid crystal lens with axis-tunability via three sector electrodes,” Microsyst. Technol. 18, 1297–1307 (2012).
[CrossRef]

Appl. Opt. (2)

Jpn. J. Appl. Phys. (3)

T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Driving of liquid crystal lens without disclination occurring by applying in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Jpn. J. Phys. (1)

M. Ye, B. Wang, and S. Sata, “Double-layer liquid crystal lens,” Jpn. J. Phys. 43, L352–L354 (2004).
[CrossRef]

Liq. Cryst. (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Microsyst. Technol. (1)

T. Yi, T. Paul, C.-P. Chao, and C.-T. Lin, “A new liquid crystal lens with axis-tunability via three sector electrodes,” Microsyst. Technol. 18, 1297–1307 (2012).
[CrossRef]

Opt. Commun. (2)

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225, 277–280 (2003).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid crystal lens with focus movable in focal plane,” Opt. Commun. 259, 710–722 (2006).
[CrossRef]

Opt. Express (1)

Sensors (1)

Y.-Y. Kao and P. C.-P. Chao, “A new dual-frequency liquid crystal lens with ring-and-Pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors 11, 5402–5415 (2011).
[CrossRef]

Other (1)

P. G. de Gennes, The Physics of Liquid Crystals (Oxford University, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Device structure of the LC microlens.

Fig. 2.
Fig. 2.

Experimental setup for the measurement of the optical properties.

Fig. 3.
Fig. 3.

Interference pattern of light wave of 0.633 μm wavelength.

Fig. 4.
Fig. 4.

Profiles of the focusing process using white-light source.

Fig. 5.
Fig. 5.

Relationship between the LC microlens focus lengths and voltage.

Fig. 6.
Fig. 6.

Simulated equipotential lines distribution profiles in LC layer when four subelectrodes are controlled, respectively.

Fig. 7.
Fig. 7.

Profiles of focus moving in the focal plane: (a) two-dimensional views of the focus moving along x-axis, (b) three-dimensional views of the light intensity of the focus corresponding to the two-dimensional views.

Fig. 8.
Fig. 8.

Power intensity at the focal plane.

Fig. 9.
Fig. 9.

Profiles of the focus swing in the focal plane: (a) left position, (b) right position, (c) upper position, (d) lower position, and (e) along the direction of the 45 deg.

Tables (1)

Tables Icon

Table 1. Focus Length when Four Subelectrodes are Controlled, Respectively

Metrics