Abstract

A radiative transfer model was applied to examine the effects of vertically stratified inherent optical properties of the water column associated with near-surface plumes of suspended particulate matter on spectral remote-sensing reflectance, Rrs(λ), of coastal marine environments. The simulations for nonuniform ocean consisting of two layers with different concentrations of suspended particulate matter (SPM) are compared with simulations for a reference homogeneous ocean whose SPM is identical to the surface SPM of the two-layer cases. The near-surface plumes of particles are shown to exert significant influence on Rrs(λ). The sensitivity of Rrs(λ) to vertical profile of SPM is dependent on the optical beam attenuation coefficient within the top layer, c1(λ), thickness of the top layer, z1, and the ratio of SPM in the underlying layer to that in the top layer, SPM2/SPM1, as well as the wavelength of light, λ. We defined a dimensionless spectral parameter, P(λ)=c1(λ)×z1×(SPM2/SPM1), to quantify and examine the effects of these characteristics of the two-layer profile of SPM on the magnitude and spectral shape of Rrs(λ). In general, the difference of Rrs(λ) between the two-layer and uniform ocean decreases to zero with an increase in P(λ). For the interpretation of ocean color measurements of water column influenced by near-surface plumes of particles, another dimensionless parameter P(λ) was introduced, which is a product of terms representing homogenous ocean and a change caused by the two-layer structure of SPM. Based on the analysis of this parameter, we found that for the two-layer ocean there is a good relationship between Rrs(λ) in the red and near-infrared spectral regions and the parameters describing the SPM(z) profile, i.e., SPM1, SPM2, and z1.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000).
    [CrossRef]
  2. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002).
    [CrossRef]
  3. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
    [CrossRef]
  4. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
    [CrossRef]
  5. D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
    [CrossRef]
  6. D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
    [CrossRef]
  7. H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery,” Geophys. Res. Lett. 28, 1587–1590 (2001).
    [CrossRef]
  8. D. Doxaran, J.-M. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
    [CrossRef]
  9. C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters: the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373–383 (2005).
    [CrossRef]
  10. T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
    [CrossRef]
  11. J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24, GB3016(2010).
    [CrossRef]
  12. W. G. Deuser, F. E. Muller-Karger, R. H. Evans, O. B. Brown, W. E. Esaias, and G. C. Feldman, “Surface-ocean color and deep-ocean carbon flux: how close a connection?” Deep-Sea Res. Part A. 37, 1331–1343 (1990).
    [CrossRef]
  13. M. Kahru, B. G. Mitchell, A. Diaz, and M. Miura, “MODIS detects a devastating algal bloom in Paracas Bay, Peru,” EOS Trans. Am. Geophys. Union 85, 465(2004).
    [CrossRef]
  14. J. Gower, S. King, and P. Goncalves, “Global monitoring of plankton blooms using MERIS MCI,” Int. J. Remote Sens. 29, 6209–6216 (2008).
    [CrossRef]
  15. F. E. Muller-Karger, P. L. Richardson, and D. J. McGillicuddy, “On the offshore dispersal of the Amazon’s Plume in the North Atlantic: comments on the paper by A. Longhurst, ‘Seasonal cooling and blooming in tropical oceans’,” Deep-Sea Res. Part A. 42, 2127–2131 (1995).
    [CrossRef]
  16. N. P. Nezlin, P. M. DiGiacomo, E. D. Stein, and D. Ackerman, “Stormwater runoff plumes observed by SeaWiFS radiometer in the Southern California Bight,” Remote Sens. Environ. 98, 494–510 (2005).
    [CrossRef]
  17. H. R. Gordon and O. B. Brown, “Diffuse reflectance of the ocean: some effects of vertical structure,” Appl. Opt. 14, 2892–2895 (1975).
    [CrossRef]
  18. J. R. V. Zaneveld, A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052–9061 (2005).
    [CrossRef]
  19. W. D. Philpot, “Radiative transfer in stratified waters: a single-scattering approximation for irradiance,” Appl. Opt. 26, 4123–4132 (1987).
    [CrossRef]
  20. H. R. Gordon and W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
    [CrossRef]
  21. J. B. Derenbach, H. Astheimer, H. P. Hansen, and H. Leach, “Vertical microscale distribution of phytoplankton in relation to the thermocline,” Mar. Ecol. Prog. Ser. 1, 187–193 (1979).
    [CrossRef]
  22. J. J. Cullen and R. W. Eppley, “Chlorophyll maximum layers of the Southern California Bight and possible mechanisms of their formation and maintenance,” Oceanol. Acta 4, 23–32 (1981).
  23. H. R. Gordon, “Remote sensing of optical properties in continuously stratified waters,” Appl. Opt. 17, 1893–1897 (1978).
    [CrossRef]
  24. H. R. Gordon and D. K. Clark, “Remote sensing optical properties of a stratified ocean: an improved interpretation,” Appl. Opt. 19, 3428–3430 (1980).
    [CrossRef]
  25. S. Sathyendranath and T. Platt, “Remote sensing of ocean chlorophyll: consequence of nonuniform pigment profile,” Appl. Opt. 28, 490–495 (1989).
    [CrossRef]
  26. J.-M. André, “Ocean color remote-sensing and the subsurface vertical structure of phytoplankton pigments,” Deep-Sea Res. Part A. 39, 763–779 (1992).
    [CrossRef]
  27. P. Xiu, Y. Liu, and J. Tang, “Variations of ocean colour parameters with nonuniform vertical profiles of chlorophyll concentration,” Int. J. Remote Sens. 29, 831–849 (2008).
    [CrossRef]
  28. M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens. 24, 519–534 (2003).
    [CrossRef]
  29. H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992).
    [CrossRef]
  30. J. Piskozub, T. Neumann, and L. Woźniak, “Ocean color remote sensing: choosing the correct depth weighting function,” Opt. Express 16, 14683–14688 (2008).
    [CrossRef]
  31. M. Stramska and D. Stramski, “Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean,” Appl. Opt. 44, 1735–1747 (2005).
    [CrossRef]
  32. L. Nanu and C. Robertson, “The effect of suspended sediment depth distribution on coastal water spectral reflectance: theoretical simulation,” Int. J. Remote Sens. 14, 225–239 (1993).
    [CrossRef]
  33. S. Tassan, “A numerical model for the detection of sediment concentration in stratified river plumes using Thematic Mapper data,” Int. J. Remote Sens. 18, 2699–2705 (1997).
    [CrossRef]
  34. C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 User’s Guide (Sequoia Scientific, 2008).
  35. C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 Technical Documentation (Sequoia Scientific, 2008).
  36. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural-waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef]
  37. F. M. Sogandares and E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
    [CrossRef]
  38. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  39. D. J. Segelstein, “The complex refractive index of water,” M. S. Thesis (University of Missouri-Kansas City, 1981).
  40. S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010).
    [CrossRef]
  41. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
    [CrossRef]
  42. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.
  43. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
    [CrossRef]
  44. J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44, 1667–1680 (2005).
    [CrossRef]
  45. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationship between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
    [CrossRef]
  46. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery-A Review (Springer-Verlag, 1983).

2010 (2)

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24, GB3016(2010).
[CrossRef]

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010).
[CrossRef]

2008 (4)

P. Xiu, Y. Liu, and J. Tang, “Variations of ocean colour parameters with nonuniform vertical profiles of chlorophyll concentration,” Int. J. Remote Sens. 29, 831–849 (2008).
[CrossRef]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

J. Gower, S. King, and P. Goncalves, “Global monitoring of plankton blooms using MERIS MCI,” Int. J. Remote Sens. 29, 6209–6216 (2008).
[CrossRef]

J. Piskozub, T. Neumann, and L. Woźniak, “Ocean color remote sensing: choosing the correct depth weighting function,” Opt. Express 16, 14683–14688 (2008).
[CrossRef]

2005 (5)

J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44, 1667–1680 (2005).
[CrossRef]

M. Stramska and D. Stramski, “Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean,” Appl. Opt. 44, 1735–1747 (2005).
[CrossRef]

J. R. V. Zaneveld, A. H. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052–9061 (2005).
[CrossRef]

N. P. Nezlin, P. M. DiGiacomo, E. D. Stein, and D. Ackerman, “Stormwater runoff plumes observed by SeaWiFS radiometer in the Southern California Bight,” Remote Sens. Environ. 98, 494–510 (2005).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters: the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373–383 (2005).
[CrossRef]

2004 (1)

M. Kahru, B. G. Mitchell, A. Diaz, and M. Miura, “MODIS detects a devastating algal bloom in Paracas Bay, Peru,” EOS Trans. Am. Geophys. Union 85, 465(2004).
[CrossRef]

2003 (2)

M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens. 24, 519–534 (2003).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

2002 (4)

2001 (1)

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery,” Geophys. Res. Lett. 28, 1587–1590 (2001).
[CrossRef]

2000 (1)

1999 (1)

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[CrossRef]

1998 (1)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

1997 (3)

1995 (1)

F. E. Muller-Karger, P. L. Richardson, and D. J. McGillicuddy, “On the offshore dispersal of the Amazon’s Plume in the North Atlantic: comments on the paper by A. Longhurst, ‘Seasonal cooling and blooming in tropical oceans’,” Deep-Sea Res. Part A. 42, 2127–2131 (1995).
[CrossRef]

1993 (1)

L. Nanu and C. Robertson, “The effect of suspended sediment depth distribution on coastal water spectral reflectance: theoretical simulation,” Int. J. Remote Sens. 14, 225–239 (1993).
[CrossRef]

1992 (2)

H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992).
[CrossRef]

J.-M. André, “Ocean color remote-sensing and the subsurface vertical structure of phytoplankton pigments,” Deep-Sea Res. Part A. 39, 763–779 (1992).
[CrossRef]

1990 (1)

W. G. Deuser, F. E. Muller-Karger, R. H. Evans, O. B. Brown, W. E. Esaias, and G. C. Feldman, “Surface-ocean color and deep-ocean carbon flux: how close a connection?” Deep-Sea Res. Part A. 37, 1331–1343 (1990).
[CrossRef]

1989 (1)

1988 (1)

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef]

1987 (1)

1981 (2)

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural-waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef]

J. J. Cullen and R. W. Eppley, “Chlorophyll maximum layers of the Southern California Bight and possible mechanisms of their formation and maintenance,” Oceanol. Acta 4, 23–32 (1981).

1980 (1)

1979 (1)

J. B. Derenbach, H. Astheimer, H. P. Hansen, and H. Leach, “Vertical microscale distribution of phytoplankton in relation to the thermocline,” Mar. Ecol. Prog. Ser. 1, 187–193 (1979).
[CrossRef]

1978 (1)

1975 (3)

Ackerman, D.

N. P. Nezlin, P. M. DiGiacomo, E. D. Stein, and D. Ackerman, “Stormwater runoff plumes observed by SeaWiFS radiometer in the Southern California Bight,” Remote Sens. Environ. 98, 494–510 (2005).
[CrossRef]

André, J.-M.

J.-M. André, “Ocean color remote-sensing and the subsurface vertical structure of phytoplankton pigments,” Deep-Sea Res. Part A. 39, 763–779 (1992).
[CrossRef]

Arnone, R. A.

Astheimer, H.

J. B. Derenbach, H. Astheimer, H. P. Hansen, and H. Leach, “Vertical microscale distribution of phytoplankton in relation to the thermocline,” Mar. Ecol. Prog. Ser. 1, 187–193 (1979).
[CrossRef]

Babin, M.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Baker, K. S.

Balch, W. M.

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery,” Geophys. Res. Lett. 28, 1587–1590 (2001).
[CrossRef]

Barnard, A. H.

Binding, C. E.

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters: the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373–383 (2005).
[CrossRef]

Boss, E.

Bowers, D. G.

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters: the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373–383 (2005).
[CrossRef]

Boynton, G. C.

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery,” Geophys. Res. Lett. 28, 1587–1590 (2001).
[CrossRef]

Bricaud, A.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Brown, O. B.

Carder, K. L.

Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Castaing, P.

D. Doxaran, J.-M. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
[CrossRef]

Cichocka, M.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010).
[CrossRef]

Cieplak, A. M.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010).
[CrossRef]

Clark, D. K.

Claustre, H.

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24, GB3016(2010).
[CrossRef]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Cullen, J. J.

J. J. Cullen and R. W. Eppley, “Chlorophyll maximum layers of the Southern California Bight and possible mechanisms of their formation and maintenance,” Oceanol. Acta 4, 23–32 (1981).

Deng, M.

M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens. 24, 519–534 (2003).
[CrossRef]

Derenbach, J. B.

J. B. Derenbach, H. Astheimer, H. P. Hansen, and H. Leach, “Vertical microscale distribution of phytoplankton in relation to the thermocline,” Mar. Ecol. Prog. Ser. 1, 187–193 (1979).
[CrossRef]

Deuser, W. G.

W. G. Deuser, F. E. Muller-Karger, R. H. Evans, O. B. Brown, W. E. Esaias, and G. C. Feldman, “Surface-ocean color and deep-ocean carbon flux: how close a connection?” Deep-Sea Res. Part A. 37, 1331–1343 (1990).
[CrossRef]

Diaz, A.

M. Kahru, B. G. Mitchell, A. Diaz, and M. Miura, “MODIS detects a devastating algal bloom in Paracas Bay, Peru,” EOS Trans. Am. Geophys. Union 85, 465(2004).
[CrossRef]

DiGiacomo, P. M.

N. P. Nezlin, P. M. DiGiacomo, E. D. Stein, and D. Ackerman, “Stormwater runoff plumes observed by SeaWiFS radiometer in the Southern California Bight,” Remote Sens. Environ. 98, 494–510 (2005).
[CrossRef]

Donaghay, P. L.

Doxaran, D.

D. Doxaran, J.-M. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
[CrossRef]

Eppley, R. W.

J. J. Cullen and R. W. Eppley, “Chlorophyll maximum layers of the Southern California Bight and possible mechanisms of their formation and maintenance,” Oceanol. Acta 4, 23–32 (1981).

Esaias, W. E.

W. G. Deuser, F. E. Muller-Karger, R. H. Evans, O. B. Brown, W. E. Esaias, and G. C. Feldman, “Surface-ocean color and deep-ocean carbon flux: how close a connection?” Deep-Sea Res. Part A. 37, 1331–1343 (1990).
[CrossRef]

Evans, R. H.

W. G. Deuser, F. E. Muller-Karger, R. H. Evans, O. B. Brown, W. E. Esaias, and G. C. Feldman, “Surface-ocean color and deep-ocean carbon flux: how close a connection?” Deep-Sea Res. Part A. 37, 1331–1343 (1990).
[CrossRef]

Feldman, G. C.

W. G. Deuser, F. E. Muller-Karger, R. H. Evans, O. B. Brown, W. E. Esaias, and G. C. Feldman, “Surface-ocean color and deep-ocean carbon flux: how close a connection?” Deep-Sea Res. Part A. 37, 1331–1343 (1990).
[CrossRef]

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Franz, B. A.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

Freeman, S. A.

Froidefond, J.-M.

D. Doxaran, J.-M. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
[CrossRef]

Fry, E. S.

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Gentili, B.

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24, GB3016(2010).
[CrossRef]

Goncalves, P.

J. Gower, S. King, and P. Goncalves, “Global monitoring of plankton blooms using MERIS MCI,” Int. J. Remote Sens. 29, 6209–6216 (2008).
[CrossRef]

Gordon, H. R.

Gower, J.

J. Gower, S. King, and P. Goncalves, “Global monitoring of plankton blooms using MERIS MCI,” Int. J. Remote Sens. 29, 6209–6216 (2008).
[CrossRef]

Groom, S. B.

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery,” Geophys. Res. Lett. 28, 1587–1590 (2001).
[CrossRef]

Hansen, H. P.

J. B. Derenbach, H. Astheimer, H. P. Hansen, and H. Leach, “Vertical microscale distribution of phytoplankton in relation to the thermocline,” Mar. Ecol. Prog. Ser. 1, 187–193 (1979).
[CrossRef]

Harbour, D. S.

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery,” Geophys. Res. Lett. 28, 1587–1590 (2001).
[CrossRef]

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Jacobs, M. M.

Kaczmarek, S.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

Kahru, M.

M. Kahru, B. G. Mitchell, A. Diaz, and M. Miura, “MODIS detects a devastating algal bloom in Paracas Bay, Peru,” EOS Trans. Am. Geophys. Union 85, 465(2004).
[CrossRef]

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

King, S.

J. Gower, S. King, and P. Goncalves, “Global monitoring of plankton blooms using MERIS MCI,” Int. J. Remote Sens. 29, 6209–6216 (2008).
[CrossRef]

Leach, H.

J. B. Derenbach, H. Astheimer, H. P. Hansen, and H. Leach, “Vertical microscale distribution of phytoplankton in relation to the thermocline,” Mar. Ecol. Prog. Ser. 1, 187–193 (1979).
[CrossRef]

Lee, Z. P.

Lewis, M. R.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

Li, Y.

M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens. 24, 519–534 (2003).
[CrossRef]

Liu, Y.

P. Xiu, Y. Liu, and J. Tang, “Variations of ocean colour parameters with nonuniform vertical profiles of chlorophyll concentration,” Int. J. Remote Sens. 29, 831–849 (2008).
[CrossRef]

Loisel, H.

Maritorena, S.

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

McClain, C.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

McCluney, W. R.

McGillicuddy, D. J.

F. E. Muller-Karger, P. L. Richardson, and D. J. McGillicuddy, “On the offshore dispersal of the Amazon’s Plume in the North Atlantic: comments on the paper by A. Longhurst, ‘Seasonal cooling and blooming in tropical oceans’,” Deep-Sea Res. Part A. 42, 2127–2131 (1995).
[CrossRef]

Miksic, E. Y.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010).
[CrossRef]

Mitchell, B. G.

M. Kahru, B. G. Mitchell, A. Diaz, and M. Miura, “MODIS detects a devastating algal bloom in Paracas Bay, Peru,” EOS Trans. Am. Geophys. Union 85, 465(2004).
[CrossRef]

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Mitchelson-Jacob, E. G.

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters: the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373–383 (2005).
[CrossRef]

Miura, M.

M. Kahru, B. G. Mitchell, A. Diaz, and M. Miura, “MODIS detects a devastating algal bloom in Paracas Bay, Peru,” EOS Trans. Am. Geophys. Union 85, 465(2004).
[CrossRef]

Mobley, C. D.

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef]

C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 Technical Documentation (Sequoia Scientific, 2008).

C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 User’s Guide (Sequoia Scientific, 2008).

Morel, A.

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery-A Review (Springer-Verlag, 1983).

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.

Muller-Karger, F. E.

F. E. Muller-Karger, P. L. Richardson, and D. J. McGillicuddy, “On the offshore dispersal of the Amazon’s Plume in the North Atlantic: comments on the paper by A. Longhurst, ‘Seasonal cooling and blooming in tropical oceans’,” Deep-Sea Res. Part A. 42, 2127–2131 (1995).
[CrossRef]

W. G. Deuser, F. E. Muller-Karger, R. H. Evans, O. B. Brown, W. E. Esaias, and G. C. Feldman, “Surface-ocean color and deep-ocean carbon flux: how close a connection?” Deep-Sea Res. Part A. 37, 1331–1343 (1990).
[CrossRef]

Nanu, L.

L. Nanu and C. Robertson, “The effect of suspended sediment depth distribution on coastal water spectral reflectance: theoretical simulation,” Int. J. Remote Sens. 14, 225–239 (1993).
[CrossRef]

Neumann, T.

Nezlin, N. P.

N. P. Nezlin, P. M. DiGiacomo, E. D. Stein, and D. Ackerman, “Stormwater runoff plumes observed by SeaWiFS radiometer in the Southern California Bight,” Remote Sens. Environ. 98, 494–510 (2005).
[CrossRef]

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Peterson, A. R.

Philpot, W. D.

Piskozub, J.

Platt, T.

S. Sathyendranath and T. Platt, “Remote sensing of ocean chlorophyll: consequence of nonuniform pigment profile,” Appl. Opt. 28, 490–495 (1989).
[CrossRef]

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef]

Pope, R. M.

Reynolds, R. A.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010).
[CrossRef]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[CrossRef]

Richardson, P. L.

F. E. Muller-Karger, P. L. Richardson, and D. J. McGillicuddy, “On the offshore dispersal of the Amazon’s Plume in the North Atlantic: comments on the paper by A. Longhurst, ‘Seasonal cooling and blooming in tropical oceans’,” Deep-Sea Res. Part A. 42, 2127–2131 (1995).
[CrossRef]

Robertson, C.

L. Nanu and C. Robertson, “The effect of suspended sediment depth distribution on coastal water spectral reflectance: theoretical simulation,” Int. J. Remote Sens. 14, 225–239 (1993).
[CrossRef]

Röttgers, R.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

Sathyendranath, S.

S. Sathyendranath and T. Platt, “Remote sensing of ocean chlorophyll: consequence of nonuniform pigment profile,” Appl. Opt. 28, 490–495 (1989).
[CrossRef]

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef]

Sciandra, A.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

Segelstein, D. J.

D. J. Segelstein, “The complex refractive index of water,” M. S. Thesis (University of Missouri-Kansas City, 1981).

Siegel, D. A.

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Smith, R. C.

Smyth, T. J.

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery,” Geophys. Res. Lett. 28, 1587–1590 (2001).
[CrossRef]

Sogandares, F. M.

Stein, E. D.

N. P. Nezlin, P. M. DiGiacomo, E. D. Stein, and D. Ackerman, “Stormwater runoff plumes observed by SeaWiFS radiometer in the Southern California Bight,” Remote Sens. Environ. 98, 494–510 (2005).
[CrossRef]

Stramska, M.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010).
[CrossRef]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

M. Stramska and D. Stramski, “Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean,” Appl. Opt. 44, 1735–1747 (2005).
[CrossRef]

Stramski, D.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010).
[CrossRef]

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24, GB3016(2010).
[CrossRef]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

M. Stramska and D. Stramski, “Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean,” Appl. Opt. 44, 1735–1747 (2005).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000).
[CrossRef]

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[CrossRef]

Sullivan, J. M.

Sundman, L. K.

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef]

C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 Technical Documentation (Sequoia Scientific, 2008).

C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 User’s Guide (Sequoia Scientific, 2008).

Tang, J.

P. Xiu, Y. Liu, and J. Tang, “Variations of ocean colour parameters with nonuniform vertical profiles of chlorophyll concentration,” Int. J. Remote Sens. 29, 831–849 (2008).
[CrossRef]

Tassan, S.

S. Tassan, “A numerical model for the detection of sediment concentration in stratified river plumes using Thematic Mapper data,” Int. J. Remote Sens. 18, 2699–2705 (1997).
[CrossRef]

Twardowski, M. S.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44, 1667–1680 (2005).
[CrossRef]

Uitz, J.

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24, GB3016(2010).
[CrossRef]

Wozniak, L.

Wozniak, S. B.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010).
[CrossRef]

Wright, V. M.

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010).
[CrossRef]

Xiu, P.

P. Xiu, Y. Liu, and J. Tang, “Variations of ocean colour parameters with nonuniform vertical profiles of chlorophyll concentration,” Int. J. Remote Sens. 29, 831–849 (2008).
[CrossRef]

Zaneveld, J. R. V.

Appl. Opt. (17)

H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000).
[CrossRef]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705–2714 (2002).
[CrossRef]

Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[CrossRef]

W. D. Philpot, “Radiative transfer in stratified waters: a single-scattering approximation for irradiance,” Appl. Opt. 26, 4123–4132 (1987).
[CrossRef]

H. R. Gordon and W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
[CrossRef]

H. R. Gordon, “Remote sensing of optical properties in continuously stratified waters,” Appl. Opt. 17, 1893–1897 (1978).
[CrossRef]

H. R. Gordon and D. K. Clark, “Remote sensing optical properties of a stratified ocean: an improved interpretation,” Appl. Opt. 19, 3428–3430 (1980).
[CrossRef]

S. Sathyendranath and T. Platt, “Remote sensing of ocean chlorophyll: consequence of nonuniform pigment profile,” Appl. Opt. 28, 490–495 (1989).
[CrossRef]

H. R. Gordon and O. B. Brown, “Diffuse reflectance of the ocean: some effects of vertical structure,” Appl. Opt. 14, 2892–2895 (1975).
[CrossRef]

H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992).
[CrossRef]

M. Stramska and D. Stramski, “Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean,” Appl. Opt. 44, 1735–1747 (2005).
[CrossRef]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural-waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef]

F. M. Sogandares and E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
[CrossRef]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef]

J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44, 1667–1680 (2005).
[CrossRef]

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationship between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef]

Biogeosciences (1)

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[CrossRef]

Deep-Sea Res. Part A. (3)

W. G. Deuser, F. E. Muller-Karger, R. H. Evans, O. B. Brown, W. E. Esaias, and G. C. Feldman, “Surface-ocean color and deep-ocean carbon flux: how close a connection?” Deep-Sea Res. Part A. 37, 1331–1343 (1990).
[CrossRef]

F. E. Muller-Karger, P. L. Richardson, and D. J. McGillicuddy, “On the offshore dispersal of the Amazon’s Plume in the North Atlantic: comments on the paper by A. Longhurst, ‘Seasonal cooling and blooming in tropical oceans’,” Deep-Sea Res. Part A. 42, 2127–2131 (1995).
[CrossRef]

J.-M. André, “Ocean color remote-sensing and the subsurface vertical structure of phytoplankton pigments,” Deep-Sea Res. Part A. 39, 763–779 (1992).
[CrossRef]

EOS Trans. Am. Geophys. Union (1)

M. Kahru, B. G. Mitchell, A. Diaz, and M. Miura, “MODIS detects a devastating algal bloom in Paracas Bay, Peru,” EOS Trans. Am. Geophys. Union 85, 465(2004).
[CrossRef]

Geophys. Res. Lett. (1)

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS Imagery,” Geophys. Res. Lett. 28, 1587–1590 (2001).
[CrossRef]

Global Biogeochem. Cycles (1)

J. Uitz, H. Claustre, B. Gentili, and D. Stramski, “Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations,” Global Biogeochem. Cycles 24, GB3016(2010).
[CrossRef]

Int. J. Remote Sens. (6)

D. Doxaran, J.-M. Froidefond, and P. Castaing, “A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters,” Int. J. Remote Sens. 23, 5079–5085 (2002).
[CrossRef]

J. Gower, S. King, and P. Goncalves, “Global monitoring of plankton blooms using MERIS MCI,” Int. J. Remote Sens. 29, 6209–6216 (2008).
[CrossRef]

P. Xiu, Y. Liu, and J. Tang, “Variations of ocean colour parameters with nonuniform vertical profiles of chlorophyll concentration,” Int. J. Remote Sens. 29, 831–849 (2008).
[CrossRef]

M. Deng and Y. Li, “Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment,” Int. J. Remote Sens. 24, 519–534 (2003).
[CrossRef]

L. Nanu and C. Robertson, “The effect of suspended sediment depth distribution on coastal water spectral reflectance: theoretical simulation,” Int. J. Remote Sens. 14, 225–239 (1993).
[CrossRef]

S. Tassan, “A numerical model for the detection of sediment concentration in stratified river plumes using Thematic Mapper data,” Int. J. Remote Sens. 18, 2699–2705 (1997).
[CrossRef]

J. Geophys. Res. (3)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

S. B. Woźniak, D. Stramski, M. Stramska, R. A. Reynolds, V. M. Wright, E. Y. Miksic, M. Cichocka, and A. M. Cieplak, “Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California,” J. Geophys. Res. 115, C08027 (2010).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Mar. Ecol. Prog. Ser. (1)

J. B. Derenbach, H. Astheimer, H. P. Hansen, and H. Leach, “Vertical microscale distribution of phytoplankton in relation to the thermocline,” Mar. Ecol. Prog. Ser. 1, 187–193 (1979).
[CrossRef]

Oceanol. Acta (1)

J. J. Cullen and R. W. Eppley, “Chlorophyll maximum layers of the Southern California Bight and possible mechanisms of their formation and maintenance,” Oceanol. Acta 4, 23–32 (1981).

Opt. Express (2)

Remote Sens. Environ. (2)

N. P. Nezlin, P. M. DiGiacomo, E. D. Stein, and D. Ackerman, “Stormwater runoff plumes observed by SeaWiFS radiometer in the Southern California Bight,” Remote Sens. Environ. 98, 494–510 (2005).
[CrossRef]

C. E. Binding, D. G. Bowers, and E. G. Mitchelson-Jacob, “Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters: the impact of variable particle scattering properties,” Remote Sens. Environ. 94, 373–383 (2005).
[CrossRef]

Science (2)

T. Platt and S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).
[CrossRef]

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[CrossRef]

Other (5)

C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 User’s Guide (Sequoia Scientific, 2008).

C. D. Mobley and L. K. Sundman, Hydrolight 5 Ecolight 5 Technical Documentation (Sequoia Scientific, 2008).

D. J. Segelstein, “The complex refractive index of water,” M. S. Thesis (University of Missouri-Kansas City, 1981).

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery-A Review (Springer-Verlag, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Spectra of (a) mass-specific absorption coefficient of particles, ap*(λ), and (b) mass-specific scattering coefficient of particles, bp*(λ), used in this study to generate input inherent optical properties for radiative transfer simulations. As indicated, the data are shown for the mineral-dominated (solid curve), mixed (dashed curve), and organic-dominated (dotted curve) particulate assemblages. The curves in black represent the actual experimental data and the curves in gray represent the best-fit curves to the experimental data or extrapolated portions of the spectra (see text for details).

Fig. 2.
Fig. 2.

Example near-surface vertical profiles of the particulate beam attenuation coefficient at 660 nm, cp(660), measured in coastal polar waters of Kongsfjord, Spitsbergen. The time and location of measurements are (i) Station MI210, July 10, 1998; 78°59.9’N, 11°58.6’E. (ii) Station B910, July 10, 1998; 79°8’N, 11°55.1’E. (iii) Station BENT2, July 8, 1998; 78°57.8’N, 11°6.2’E. The inset shows the rescaled plot for the station BENT2.

Fig. 3.
Fig. 3.

Left-hand panels: Example results from radiative transfer simulations for spectral remote-sensing reflectance, Rrs(λ), for vertically nonuniform two-layer ocean with SPM1>SPM2 (gray curves) and for a reference uniform ocean with SPM(z)=SPM1 (black curves), where SPM is the mass concentration of suspended particulate matter and the subscripts 1 and 2 denote the top near-surface layer and the underlying layer of the ocean, respectively. Right-hand panels: The percent difference in remote-sensing reflectance, ΔRrs(λ), between the nonuniform and uniform vertical profiles of SPM(z). Each graph for ΔRrs(λ) has been created from corresponding data presented in the left-hand panels. The various plots in each graph correspond to simulations for nonuniform ocean with different values for the thickness of the top near-surface layer, z1. The effect of increasing z1 on the location of the Rrs(λ) spectra is indicated by an arrow. The type of particulate assemblage and the magnitudes of SPM1 and the ratio SPM2/SPM1 are also given.

Fig. 4.
Fig. 4.

Example results from radiative transfer simulations that illustrate the variation in the percent difference in remote-sensing reflectance, ΔRrs(λ), between the vertically nonuniform two-layer ocean and uniform ocean as a function of dimensionless parameter P(λ). The results are shown for five light wavelengths (355, 443, 555, 655, and 805 nm) for waters with mineral-dominated (black symbols) and organic-dominated (gray symbols) particulate assemblages and a given ratio SPM2/SPM1=0.1. Each plot (i.e., a series of data points depicted by the same symbol) in a given graph consists of a number of data points that correspond to simulations for different values of z1. For the sake of clarity, a few example sets of data points at 665 nm extracted from Fig. 4(d) are shown in Fig. 4(f) to aid in the visualization of the effects of varying z1 and SPM1 on ΔRrs(λ).

Fig. 5.
Fig. 5.

Example results from radiative transfer simulations showing the variation in beam attenuation coefficient within the top near-surface oceanic layer, c1(λ), as a function of mass concentration of suspended particulate matter within that layer, SPM1, for five light wavelengths as indicated.

Fig. 6.
Fig. 6.

Example results from radiative transfer simulations showing the variation in the threshold thickness of the top near-surface oceanic layer, z1max, as a function of the beam attenuation coefficient within that layer, c1, for five light wavelengths, 355, 443, 555, 665, and 805 nm.

Fig. 7.
Fig. 7.

Example results from radiative transfer simulations showing the variation in the threshold thickness of the top near-surface oceanic layer, z1max, as a function of light wavelength, λ, for waters with mineral-dominated (panel a) and organic-dominated (panel b) particulate assemblages. The results were obtained for vertically nonuniform two-layer ocean with a given ratio SPM2/SPM1=0.1 and for different values of SPM1 as indicated.

Fig. 8.
Fig. 8.

Example results from radiative transfer simulations showing the variation in light wavelength, λmax, as a function of the thickness of the top near-surface layer of the vertically nonuniform two-layer ocean, z1, for different values of particle concentration within that top layer, SPM1, as indicated. The ratio SPM2/SPM1 is 0.1 and the particulate assemblage is mineral-dominated for the presented simulations. The value of λmax represents the light wavelength at which the absolute percent difference in spectral remote-sensing reflectance, |ΔRrs(λ)|, reaches its maximum for a given pair of simulations of vertically nonuniform and uniform ocean.

Fig. 9.
Fig. 9.

Data obtained with radiative transfer simulations and the associated fitted curves that show the relationship between the remote-sensing reflectance for vertically nonuniform two-layer ocean, Rrs-non(λ), and the dimensionless parameter, P(λ), at four example light wavelengths (655, 705, 805, and 855 nm) from the red-NIR portion of the spectrum. The results represent all simulations made in this study for which the absolute percent difference in remote-sensing reflectance between the nonuniform and uniform cases, |ΔRrs(λ)|, was greater or equal to 5%. The number of data points, N, included in each graph is given.

Fig. 10.
Fig. 10.

Optimized spectral values of best-fit coefficients, A(λ), B(λ), C(λ), and D(λ), for the relationship between the remote-sensing reflectance of vertically nonuniform two-layer ocean, Rrs-non(λ), and the parameter P(λ) in the red-NIR spectral region.

Tables (2)

Tables Icon

Table 1. Best-Fit Functions and the Root Mean Square Error for the Spectra of Mass-Specific Absorption, ap*(λ), and Scattering, bp*(λ), Coefficients of Suspended Particlesa

Tables Icon

Table 2. Parameters of the Vertical Profile of Mass Concentration of Suspended Particulate Matter, SPM(z), Considered in Radiative Transfer Simulations of a Two-Layer Ocean for Each of the Three Composition Types of Particulate Assemblages, i.e., Mineral-Dominated, Mixed, and Organic-Dominateda

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

a(λ,z)=aw(λ)+ap(λ,z)+ag(λ,z),
ap(λ,z)=ap*(λ)×SPM(z),
ag(λ,z)=ag(λ0,z)exp[S(λλ0)],
ag(443,z)=0.070×SPM(z)0.64.
b(λ,z)=bw(λ)+bp(λ,z),
bp(λ,z)=bp*(λ)×SPM(z),
ΔRrs(λ)=[(Rrs-non(λ)Rrs-uni(λ))/Rrs-uni(λ)]×100%,
P(λ)=c1(λ)×z1×(SPM2/SPM1)=τ1(λ)×(SPM2/SPM1),
c1(λ)=cw(λ)+cp*(λ)×SPM1+0.07×SPM10.64×exp[0.0176×(λ443)],
P(λ)={bb1(λ)/[a1(λ)+bb1(λ)]}α(λ)×[τ1(λ)]β(λ)×(SPM2/SPM1)γ(λ).
P(λ)={[bbw(λ)+bp*(λ)×SPM1×b˜bp]/[aw(λ)+ap*(λ)×SPM1+bbw(λ)+bp*(λ)×SPM1×b˜bp]}α(λ)×{[cw(λ)+cp*(λ)×SPM1]×z1}β(λ)×(SPM2/SPM1)γ(λ).
log[Rrs-non(λ)]=C1(λ)×log[P(λ)]+C2(λ),
err=i=1N(Rrs-non-fitRrs-nonRrs-non)2N,
log[Rrs-non(λ)]=A(λ)×log{bb1(λ)/[a1(λ)+bb1(λ)]}+B(λ)×log[τ1(λ)]+C(λ)×log(SPM2/SPM1)+D(λ),

Metrics