Abstract

A colorimetric sensor providing a direct visual indication of chemical contamination was developed. The sensor is a combination of a chemically sensitive dye layer and a resonant waveguide grating. Enhancement of the light absorption by the photonic structure can be clearly seen. The detection is based on the color change of the reflected light after exposure to a gas or a liquid. Low-cost fabrication and compatibility with environments where electricity cannot be used make this device very attractive for applications in hospitals, industries, with explosives, and in traffic.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided mode resonances in planar dielectric layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
    [CrossRef]
  2. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
    [CrossRef]
  3. M. T. Gale, K. Knop, and R. H. Morf, “Zero-order diffractive microstructures for security applications,” Proc. SPIE 1210, 83–89 (1990).
    [CrossRef]
  4. S. S. Wang and R. Magnusson, “Theory and applications of guided mode resonance filters,” Opt. Express 32, 2606–2613 (1993).
    [CrossRef]
  5. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
    [CrossRef]
  6. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
    [CrossRef]
  7. J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
    [CrossRef]
  8. J.-N. Yih, Y.-M. Chu, Y.-C. Mao, W.-H. Wang, F.-C. Chien, C.-Y. Lin, K.-L. Lee, P.-K. Wei, and S.-J. Chen, “Optical waveguide biosensors constructed with subwavelength gratings,” Appl. Opt. 45, 1938–1942 (2006).
    [CrossRef]
  9. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting Photonic Crystal Biosensor Performance,” IEEE Sens. J. 8, 274–280 (2008).
    [CrossRef]
  10. A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14, 588–595 (1997).
    [CrossRef]
  11. O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
    [CrossRef]
  12. A. Greenwell, S. Boonruang, and M. G. Moharam, “Effect of loss or gain on guided mode resonant devices,” in Integrated Photonics Research and Applications/Nanophotonics, OSA Technical Digest (Optical Society of America, 2006), paper NThA1.
  13. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for thin silicon solar cells,” Opt. Express 17, 14312–14321 (2009).
    [CrossRef]
  14. S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theor. Tech. MTT-23, 123–133 (1975).
    [CrossRef]
  15. L. Li, “Reformulation of the fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
    [CrossRef]
  16. D. Ashlock, Evolutionary Computation for Modeling and Optimization (Springer, 2006).
  17. S. S. Sarkisov, D. E. Diggs, G. Adamovsky, and M. J. Curley, “Single-arm double-mode double-order planar waveguide interferometric sensor,” Appl. Opt. 40, 349–359 (2001).
    [CrossRef]
  18. M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43, 373–386 (2005).
    [CrossRef]
  19. M. T. Gale, “Replication technology for micro optics and optical microsystems,” Proc. SPIE 5177, 113–120 (2003).
    [CrossRef]

2009 (1)

2008 (1)

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting Photonic Crystal Biosensor Performance,” IEEE Sens. J. 8, 274–280 (2008).
[CrossRef]

2006 (1)

2005 (2)

M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43, 373–386 (2005).
[CrossRef]

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

2004 (2)

O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
[CrossRef]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004).
[CrossRef]

2003 (1)

M. T. Gale, “Replication technology for micro optics and optical microsystems,” Proc. SPIE 5177, 113–120 (2003).
[CrossRef]

2002 (1)

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

2001 (1)

1998 (1)

L. Li, “Reformulation of the fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[CrossRef]

1997 (2)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14, 588–595 (1997).
[CrossRef]

1993 (1)

S. S. Wang and R. Magnusson, “Theory and applications of guided mode resonance filters,” Opt. Express 32, 2606–2613 (1993).
[CrossRef]

1990 (2)

M. T. Gale, K. Knop, and R. H. Morf, “Zero-order diffractive microstructures for security applications,” Proc. SPIE 1210, 83–89 (1990).
[CrossRef]

S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided mode resonances in planar dielectric layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
[CrossRef]

1975 (1)

S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theor. Tech. MTT-23, 123–133 (1975).
[CrossRef]

Adamovsky, G.

Ashlock, D.

D. Ashlock, Evolutionary Computation for Modeling and Optimization (Springer, 2006).

Bagby, J. S.

Bertoni, H. L.

S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theor. Tech. MTT-23, 123–133 (1975).
[CrossRef]

Block, I. D.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting Photonic Crystal Biosensor Performance,” IEEE Sens. J. 8, 274–280 (2008).
[CrossRef]

Boonruang, S.

A. Greenwell, S. Boonruang, and M. G. Moharam, “Effect of loss or gain on guided mode resonant devices,” in Integrated Photonics Research and Applications/Nanophotonics, OSA Technical Digest (Optical Society of America, 2006), paper NThA1.

Chen, L.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

Chen, S.-J.

Chien, F.-C.

Chu, Y.-M.

Cunningham, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

Cunningham, B. T.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting Photonic Crystal Biosensor Performance,” IEEE Sens. J. 8, 274–280 (2008).
[CrossRef]

Curley, M. J.

Deng, X.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

Diggs, D. E.

Ding, Y.

Drouard, E.

El Daif, O.

Fave, A.

Friesem, A. A.

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14, 588–595 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

Gale, M. T.

M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43, 373–386 (2005).
[CrossRef]

M. T. Gale, “Replication technology for micro optics and optical microsystems,” Proc. SPIE 5177, 113–120 (2003).
[CrossRef]

M. T. Gale, K. Knop, and R. H. Morf, “Zero-order diffractive microstructures for security applications,” Proc. SPIE 1210, 83–89 (1990).
[CrossRef]

Ganesh, N.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting Photonic Crystal Biosensor Performance,” IEEE Sens. J. 8, 274–280 (2008).
[CrossRef]

Gimkiewicz, C.

M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43, 373–386 (2005).
[CrossRef]

Glasberg, S.

Greenwell, A.

A. Greenwell, S. Boonruang, and M. G. Moharam, “Effect of loss or gain on guided mode resonant devices,” in Integrated Photonics Research and Applications/Nanophotonics, OSA Technical Digest (Optical Society of America, 2006), paper NThA1.

Kaminski, A.

Knop, K.

M. T. Gale, K. Knop, and R. H. Morf, “Zero-order diffractive microstructures for security applications,” Proc. SPIE 1210, 83–89 (1990).
[CrossRef]

Kwan, S.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

Lee, K.-L.

Lemiti, M.

Letartre, X.

Li, L.

L. Li, “Reformulation of the fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[CrossRef]

Li, P.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

Lin, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

Lin, C.-Y.

Liu, F.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

Lu, M.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting Photonic Crystal Biosensor Performance,” IEEE Sens. J. 8, 274–280 (2008).
[CrossRef]

Magnusson, R.

Mao, Y.-C.

Moharam, M. G.

S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided mode resonances in planar dielectric layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
[CrossRef]

A. Greenwell, S. Boonruang, and M. G. Moharam, “Effect of loss or gain on guided mode resonant devices,” in Integrated Photonics Research and Applications/Nanophotonics, OSA Technical Digest (Optical Society of America, 2006), paper NThA1.

Morf, R. H.

M. T. Gale, K. Knop, and R. H. Morf, “Zero-order diffractive microstructures for security applications,” Proc. SPIE 1210, 83–89 (1990).
[CrossRef]

Obi, S.

M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43, 373–386 (2005).
[CrossRef]

Park, Y.

Peng, S. T.

S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theor. Tech. MTT-23, 123–133 (1975).
[CrossRef]

Pepper, J.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14, 588–595 (1997).
[CrossRef]

Sarkisov, S. S.

Schnieper, M.

M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43, 373–386 (2005).
[CrossRef]

Seassal, C.

Sharon, A.

A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A 14, 588–595 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

Söchtig, J.

M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43, 373–386 (2005).
[CrossRef]

Stenzel, O.

O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
[CrossRef]

Tamir, T.

S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theor. Tech. MTT-23, 123–133 (1975).
[CrossRef]

Thiele, H.

M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43, 373–386 (2005).
[CrossRef]

Viktorovitch, P.

Wang, J. J.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

Wang, S. S.

Wang, W.-H.

Wei, P.-K.

Westenhöfer, S.

M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43, 373–386 (2005).
[CrossRef]

Yih, J.-N.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038–2059 (1997).
[CrossRef]

IEEE Sens. J. (1)

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting Photonic Crystal Biosensor Performance,” IEEE Sens. J. 8, 274–280 (2008).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theor. Tech. MTT-23, 123–133 (1975).
[CrossRef]

J. Mod. Opt. (1)

L. Li, “Reformulation of the fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (1)

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23, 3006–3010 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (1)

M. T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43, 373–386 (2005).
[CrossRef]

Proc. SPIE (3)

M. T. Gale, “Replication technology for micro optics and optical microsystems,” Proc. SPIE 5177, 113–120 (2003).
[CrossRef]

O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
[CrossRef]

M. T. Gale, K. Knop, and R. H. Morf, “Zero-order diffractive microstructures for security applications,” Proc. SPIE 1210, 83–89 (1990).
[CrossRef]

Sens. Actuators B (1)

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B 81, 316–328 (2002).
[CrossRef]

Other (2)

D. Ashlock, Evolutionary Computation for Modeling and Optimization (Springer, 2006).

A. Greenwell, S. Boonruang, and M. G. Moharam, “Effect of loss or gain on guided mode resonant devices,” in Integrated Photonics Research and Applications/Nanophotonics, OSA Technical Digest (Optical Society of America, 2006), paper NThA1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Sketch of the resonant waveguide structure with a dye thin film deposited on top of the structure. The upcoming light couples inside the structure, propagates along the surface, and eventually decouples out of the structure.

Fig. 2.
Fig. 2.

Power remaining inside the leaky mode according to the propagation distance. Red curve corresponds to a leaky mode without any absorption material. Blue curve corresponds to the same leaky mode resonance but with an absorption material. Area A between the red and the blue curve represents the amount of light that is actually absorbed by the structure having an extinction coefficient of k=0.01.

Fig. 3.
Fig. 3.

Light enhancement factor G at impedance matching conditions according to the quality factor of the waveguide grating. Wavelength of 600 nm and refractive index of 1.5 are assumed.

Fig. 4.
Fig. 4.

Waveguide grating structure with optical and geometric parameters.

Fig. 5.
Fig. 5.

Rigorous simulations of the reflection (0R), transmission (0T), and absorption (Abs=1-0R-0T) of the dye thin film at the resonant wavelength as a function of the extinction coefficient (k). Graph (a) corresponds to structure 1 and graph (b) to structure 2 (see Table 1). Absorption calculated with the simplified absorption model is also shown (Abs Model). Dashed lines indicate the coordinates of the impedance matching conditions.

Fig. 6.
Fig. 6.

Light enhancement factor G retrieved from rigorous simulations of structure 1 and structure 2.

Fig. 7.
Fig. 7.

Experimental setup to measure reflection spectrum under dry air and ammonia atmosphere.

Fig. 8.
Fig. 8.

Transmission of BCP film on glass under ammonia exposure (100 ppm) according to time exposure.

Fig. 9.
Fig. 9.

Extinction coefficient (k) of the BCP film under ammonia exposure (100 ppm), retrieved from the transmission measurement.

Fig. 10.
Fig. 10.

Reflection spectrum of the calculated optimum structure. Black curve: Dye thin film has an extinction coefficient k of 0. Red and blue curves: Dye thin film has an extinction coefficient k of 0.01.

Fig. 11.
Fig. 11.

Absorption calculated for the optimized structure for different values of the extinction coefficient k (constant over wavelength) of the dye thin film.

Fig. 12.
Fig. 12.

Reflection spectrum of BCP film on waveguide gratings under dry air (blue curve) and ammonia exposure (red curve).

Fig. 13.
Fig. 13.

Relative response ([[RinitialR]/Rinitial) of BCP films on glass (dash curves) and on waveguide grating (solid curves) under ammonia exposure (100 ppm).

Fig. 14.
Fig. 14.

Sketch of a possible real scenario where the light source is not collimated.

Fig. 15.
Fig. 15.

Reflection spectrum of the optimized structure according to incidence angle.

Fig. 16.
Fig. 16.

Average reflected spectrum according to the deviation angle.

Tables (6)

Tables Icon

Table 1. Optical and Geometrical Parameters of Two Resonant Waveguide Structures

Tables Icon

Table 2. Optimized Waveguide Structure Parameters

Tables Icon

Table 3. Color Coordinates of the Reflection Spectra According to Time Exposure in Ammonia Atmosphere for BCP Film on Waveguide Grating

Tables Icon

Table 4. Color Coordinates of the Transmission Spectra According to Time Exposure in Ammonia Atmosphere for BCP Film on Glass

Tables Icon

Table 5. Color Coordinates and Color Deviation According to the Incidence Angle Deviation

Tables Icon

Table 6. Color Coordinates and Color Changes with Absorption Coefficient (k=0.01) Added to the BCP layer According to the Incidence Angle Deviation

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Q=ϖτo
α=1τacn,
Q=2πnαλ.
α=4πkλ.
Q=n2k.
β=βr+jβi,
P(x)=Poexp(2βix),
P(x)=Poexp[2(βi+α)x].
A=0+P0e(2βix)dx0+P0e(2(βi+α)x)dxA=P0α2βi(βi+α).
ARel=P0α2βi(βi+α)P02βiARel=α(βi+α).
βi=1τ0cn.
ARel=0.5.
G=0.51e(αl).
G=0.5(1e(2πnlQλ)).
α=ln(T)l
α=4πkλ
k=ln(T)*λ4π*l,
d×sinα=[d±(w2)]×sinαsinα=d[d±(w2)]sinα.
α=15.4°andα=18.9°.

Metrics